login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083420 a(n)=2*4^n-1. 32
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005

Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007

Number of non-powers of 2 in A234471 betweeen successive powers of 2. - Irina Gerasimova, Jan 20 2014.

LINKS

Table of n, a(n) for n=0..22.

Eric Weisstein's World of Mathematics, Rule 220

Index entries for sequences related to linear recurrences with constant coefficients

FORMULA

G.f.: (1+2*x)/((1-x)*(1-4*x))

E.g.f.: 2*exp(4*x)-exp(x)

With a leading zero, this is a(n)=(4^n-2+0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003

a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k)=B(k, 0) is the k-th Bernoulli number. a(n)=5*a(n-1)-4*a(n-2). Also a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n) - Benoit Cloitre, Jun 18 2004

a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006

a(n) = Stirling2(2*(n+1),2) [Zerinvary Lajos, Dec 06 2006]

a(n) = 4*a(n-1)+3 (with a(0)=1). [From Vincenzo Librandi, Dec 30 2010]

a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011

a(n) = 6*A002450(n)+1. - Roderick MacPhee, Jul 06 2012

a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014

a(n) = A234471(a(n)) = A004171(n) - 1. - Irina Gerasimova, Jan 21 2014

MAPLE

seq(2*4^n-1, n = 0..22); # Peter Luschny, Aug 17 2011

MATHEMATICA

Table[ChebyshevT[2, 2^n], {n, 1, 40}] [From Vladimir Orlovsky, Nov 03 2009]

CROSSREFS

Cf. A083421.

Cf. A000668 (primes in this sequence), A004171, A234471 (even sums of 2 successive evil numbers). - Irina Gerasimova, Jan 20 2014.

Sequence in context: A056909 A002147 A169785 * A036282 A033474 A001896

Adjacent sequences:  A083417 A083418 A083419 * A083421 A083422 A083423

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Apr 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 19:18 EDT 2014. Contains 240946 sequences.