login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083420 a(n) = 2*4^n - 1. 36
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005

Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007

If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2+2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata..., Fig 11.

Eric Weisstein's World of Mathematics, Rule 220

Index entries for linear recurrences with constant coefficients, signature (5,-4).

FORMULA

G.f.: (1+2*x)/((1-x)*(1-4*x)).

E.g.f.: 2*exp(4*x)-exp(x).

With a leading zero, this is a(n)=(4^n-2+0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003

a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k)=B(k, 0) is the k-th Bernoulli number. a(n)=5*a(n-1)-4*a(n-2). Also a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). - Benoit Cloitre, Jun 18 2004

a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006

a(n) = Stirling2(2*(n+1),2). - Zerinvary Lajos, Dec 06 2006

a(n) = 4*a(n-1)+3 with n>0, a(0)=1. - Vincenzo Librandi, Dec 30 2010

a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011

a(n) = 6*A002450(n)+1. - Roderick MacPhee, Jul 06 2012

a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014

a(n) = A004171(n) - 1. - Irina Gerasimova, Jan 21 2014

a(n) = Sum_{i=0..n} C(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015

MAPLE

seq(2*4^n-1, n = 0..22); # Peter Luschny, Aug 17 2011

MATHEMATICA

Table[ChebyshevT[2, 2^n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)

CoefficientList[Series[(1 + 2 x)/((1 - x) (1 - 4 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 09 2014 *)

PROG

(MAGMA) [2*4^n-1 : n in [0..30]]; // Wesley Ivan Hurt, Mar 14 2015

(PARI) a(n)=2*4^n-1 \\ Charles R Greathouse IV, Sep 24 2015

(Haskell)

a083420 = subtract 1 . (* 2) . (4 ^)  -- Reinhard Zumkeller, Dec 22 2015

CROSSREFS

Cf. A083421, A000668 (primes in this sequence), A004171, A000244

Sequence in context: A002147 A169785 A255282 * A036282 A033474 A001896

Adjacent sequences:  A083417 A083418 A083419 * A083421 A083422 A083423

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Apr 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 27 20:36 EDT 2016. Contains 275912 sequences.