login
A213243
Number of nonzero elements in GF(2^n) that are cubes.
11
1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 2047, 1365, 8191, 5461, 32767, 21845, 131071, 87381, 524287, 349525, 2097151, 1398101, 8388607, 5592405, 33554431, 22369621, 134217727, 89478485, 536870911, 357913941, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 22906492245
OFFSET
1,3
FORMULA
a(n) = M / gcd( M, 3 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014, verified by Robert Israel, Apr 22 2016: (Start)
a(n) = (-1)*((-2+(-1)^n)*(-1+2^n))/3.
a(n) = 5*a(n-2) - 4*a(n-4).
G.f.: x*(2*x^2+x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)). (End)
E.g.f.: (-1 + exp(x) - 2*exp(3*x) + 2*exp(4*x))*exp(-2*x)/3. - Ilya Gutkovskiy, Apr 22 2016
MAPLE
A213243:=n->(2^n-1)/gcd(2^n-1, 3): seq(A213243(n), n=1..50); # Wesley Ivan Hurt, Aug 23 2014
MATHEMATICA
Table[(2^n - 1)/GCD[2^n - 1, 3], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
LinearRecurrence[{0, 5, 0, -4}, {1, 1, 7, 5}, 40] (* Harvey P. Dale, Jan 05 2017 *)
PROG
(Magma) [(2^n - 1) / GCD (2^n - 1, 3): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
(PARI) a(n)=(2^n-1)/gcd(2^n-1, 3) \\ Edward Jiang, Sep 04 2014
CROSSREFS
Cf. A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers).
Sequence in context: A146619 A059990 A213246 * A185269 A344917 A328758
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 07 2012
STATUS
approved