login
A213246
Number of nonzero elements in GF(2^n) that are 9th powers.
8
1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 29127, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 7635497415
OFFSET
1,3
LINKS
FORMULA
a(n) = M / gcd( M, 9 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 65*a(n-6)-64*a(n-12).
G.f.: x*(2*x^2 -x +1)*(16*x^8 +16*x^7 +28*x^6 +16*x^5 +25*x^4 +8*x^3 +7*x^2 +2*x +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(x^2 -x +1)*(x^2 +x +1)*(4*x^2 -2*x +1)*(4*x^2 +2*x +1)). (End)
Conjectures verified by Robert Israel, Jun 27 2018.
MAPLE
A213246:=n->(2^n-1)/gcd(2^n-1, 9): seq(A213246(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
MATHEMATICA
Table[(2^n - 1)/GCD[2^n - 1, 9], {n, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
PROG
(Magma) [(2^n-1)/GCD(2^n-1, 9): n in [1..40]]; // Vincenzo Librandi, Mar 15 2013
(PARI) a(n)=(2^n-1)/gcd(2^n-1, 9) \\ Edward Jiang, Sep 04 2014
(GAP) List([1..40], n->(2^n-1)/Gcd(2^n-1, 9)); # Muniru A Asiru, Jun 27 2018
CROSSREFS
Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213247 (11th powers), A213248 (13th powers).
Sequence in context: A334784 A146619 A059990 * A213243 A185269 A344917
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Jun 07 2012
STATUS
approved