OFFSET
1,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,65,0,0,0,0,0,-64).
FORMULA
a(n) = M / gcd( M, 9 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 65*a(n-6)-64*a(n-12).
G.f.: x*(2*x^2 -x +1)*(16*x^8 +16*x^7 +28*x^6 +16*x^5 +25*x^4 +8*x^3 +7*x^2 +2*x +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(x^2 -x +1)*(x^2 +x +1)*(4*x^2 -2*x +1)*(4*x^2 +2*x +1)). (End)
Conjectures verified by Robert Israel, Jun 27 2018.
MAPLE
MATHEMATICA
Table[(2^n - 1)/GCD[2^n - 1, 9], {n, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
PROG
(Magma) [(2^n-1)/GCD(2^n-1, 9): n in [1..40]]; // Vincenzo Librandi, Mar 15 2013
(PARI) a(n)=(2^n-1)/gcd(2^n-1, 9) \\ Edward Jiang, Sep 04 2014
(GAP) List([1..40], n->(2^n-1)/Gcd(2^n-1, 9)); # Muniru A Asiru, Jun 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Jun 07 2012
STATUS
approved