login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213246
Number of nonzero elements in GF(2^n) that are 9th powers.
8
1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 29127, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 7635497415
OFFSET
1,3
LINKS
FORMULA
a(n) = M / gcd( M, 9 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 65*a(n-6)-64*a(n-12).
G.f.: x*(2*x^2 -x +1)*(16*x^8 +16*x^7 +28*x^6 +16*x^5 +25*x^4 +8*x^3 +7*x^2 +2*x +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(x^2 -x +1)*(x^2 +x +1)*(4*x^2 -2*x +1)*(4*x^2 +2*x +1)). (End)
Conjectures verified by Robert Israel, Jun 27 2018.
MAPLE
A213246:=n->(2^n-1)/gcd(2^n-1, 9): seq(A213246(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
MATHEMATICA
Table[(2^n - 1)/GCD[2^n - 1, 9], {n, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
PROG
(Magma) [(2^n-1)/GCD(2^n-1, 9): n in [1..40]]; // Vincenzo Librandi, Mar 15 2013
(PARI) a(n)=(2^n-1)/gcd(2^n-1, 9) \\ Edward Jiang, Sep 04 2014
(GAP) List([1..40], n->(2^n-1)/Gcd(2^n-1, 9)); # Muniru A Asiru, Jun 27 2018
CROSSREFS
Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213247 (11th powers), A213248 (13th powers).
Sequence in context: A334784 A146619 A059990 * A213243 A185269 A344917
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Jun 07 2012
STATUS
approved