login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059990
Number of points of period n under the dual of the map x->2x on Z[1/6].
2
1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 9709, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647
OFFSET
1,3
COMMENTS
This sequence counts the periodic points in the simplest nontrivial S-integer dynamical system. These dynamical systems arise naturally in arithmetic and are built by making an isometric extension of a familiar hyperbolic system. The extension destroys some of the periodic points, in this case reducing the original number 2^n-1 by factoring out any 3's. An interesting feature is that the logarithmic growth rate is still log 2.
A059990[n+7] times some power of 3 seems to me the greatest common Denominator of A035522[4n+16+1],A035522[4n+16+2],A035522[4n+16+3] and A035522[4n+16+4] for n>1 [From Dylan Hamilton, Aug 04 2010]
REFERENCES
V. Chothi, G. Everest, T. Ward. S-integer dynamical systems: periodic points. J. Reine Angew. Math., 489 (1997), 99-132.
T. Ward. Almost all S-integer dynamical systems have many periodic points. Erg. Th. Dynam. Sys. 18 (1998), 471-486.
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n)=(2^n-1)x|2^n-1|_3
EXAMPLE
a(6)=7 because 2^6-1 = 3^2x7, so |2^6-1|_3=3^(-2).
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 08 2001
STATUS
approved