login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334784
a(n) = Sum_{d|n} lcm(tau(d), sigma(d)).
2
1, 7, 5, 28, 7, 23, 9, 88, 44, 49, 13, 128, 15, 39, 35, 243, 19, 140, 21, 112, 45, 55, 25, 308, 100, 105, 84, 228, 31, 161, 33, 369, 65, 133, 63, 1064, 39, 87, 75, 532, 43, 183, 45, 160, 152, 103, 49, 1083, 66, 328, 95, 420, 55, 300, 91, 408, 105, 217, 61, 476
OFFSET
1,2
FORMULA
a(p) = p + 2 for p = odd primes (A065091).
EXAMPLE
a(6) = lcm(tau(1), sigma(1)) + lcm(tau(2), sigma(2)) + lcm(tau(3), sigma(3)) + lcm(tau(6), sigma(6)) = lcm(1, 1) + lcm(2, 3) + lcm(2, 4) + lcm(4, 12) = 1 + 6 + 4 + 12 = 23.
MATHEMATICA
a[n_] := DivisorSum[n, LCM[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
PROG
(Magma) [&+[LCM(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = sumdiv(n, d, lcm(numdiv(d), sigma(d))); \\ Michel Marcus, May 10 2020
CROSSREFS
Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334783 (Sum_{d|n} lcm(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009278 (lcm(tau(n), sigma(n))).
Sequence in context: A263825 A226661 A120404 * A146619 A059990 A213246
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 10 2020
STATUS
approved