login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334783
a(n) = Sum_{d|n} lcm(d, sigma(d)).
4
1, 7, 13, 35, 31, 31, 57, 155, 130, 127, 133, 143, 183, 231, 163, 651, 307, 382, 381, 575, 741, 535, 553, 383, 806, 735, 1210, 315, 871, 631, 993, 2667, 673, 1231, 1767, 3770, 1407, 1527, 2379, 1055, 1723, 1599, 1893, 1487, 1450, 2215, 2257, 2367, 2850, 5552
OFFSET
1,2
FORMULA
a(p) = p^2 + p + 1 for p = primes (A000040).
EXAMPLE
a(6) = lcm(1, sigma(1)) + lcm(2, sigma(2)) + lcm(3, sigma(3)) + lcm(6, sigma(6)) = lcm(1, 1) + lcm(2, 3) + lcm(3, 4) + lcm(6, 12) = 1 + 6 + 12 + 12 = 31.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
for d from 1 to N do
t:= ilcm(d, numtheory:-sigma(d));
R:= [seq(i, i=d..N, d)];
V[R]:= V[R] +~ t;
od:
convert(V, list); # Robert Israel, May 13 2020
MATHEMATICA
a[n_] := DivisorSum[n, LCM[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
PROG
(Magma) [&+[LCM(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = sumdiv(n, d, lcm(d, sigma(d))); \\ Michel Marcus, May 10 2020
CROSSREFS
Cf. A334490 (Sum_{d|n} gcd(d, sigma(d))), A334782 (Sum_{d|n} lcm(d, tau(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009242 (lcm(n, sigma(n))).
Sequence in context: A026318 A331960 A061204 * A060983 A001001 A067692
KEYWORD
nonn,look
AUTHOR
Jaroslav Krizek, May 10 2020
STATUS
approved