login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067692
a(n) = Sum_{0 < d <= t <= n, d|n, t|n} d*t.
12
1, 7, 13, 35, 31, 97, 57, 155, 130, 227, 133, 497, 183, 413, 418, 651, 307, 988, 381, 1155, 762, 953, 553, 2225, 806, 1307, 1210, 2093, 871, 3242, 993, 2667, 1762, 2183, 1802, 5096, 1407, 2705, 2418, 5155, 1723, 5858
OFFSET
1,2
COMMENTS
Total area of all s X t rectangles, where the (s,t) are the pairs of divisors of n such that 1 <= s <= t. For example, when n = 4, the rectangles are 1 X 1, 1 X 2, 1 X 4, 2 X 2, 2 X 4, and 4 X 4, whose total area is a(4) = 1*1 + 1*2 + 1*4 + 2*2 + 2*4 + 4*4 = 35. - Wesley Ivan Hurt, Nov 15 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = (1/2)*(sigma_1(n)^2 + sigma_2(n)), cf. A000203, A001157.
For p prime: a(p) = 1 + p + p^2, a(A000040(k)) = A060800(k).
Sum_{k=1..n} a(k) = (7/12)*zeta(3) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023
EXAMPLE
a(6) = 1*1+1*2+1*3+1*6+2*2+2*3+2*6+3*3+3*6+6*6 = 1+2+3+6+4+6+12+9+18+36 = 97.
MATHEMATICA
Table[(DivisorSigma[1, n]^2+DivisorSigma[2, n])/2, {n, 50}] (* Harvey P. Dale, Jan 31 2015 *)
PROG
(PARI) a(n)=my(D=sigma(n)); sumdiv(n, t, D-=t; t*(D+t)) \\ Charles R Greathouse IV, Aug 21 2011
(PARI) a(n)=(sigma(n)^2+sigma(n, 2))/2 \\ Charles R Greathouse IV, Aug 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 04 2002
STATUS
approved