

A067692


a(n) = Sum_{0 < d <= t <= n, dn, tn} d*t.


12



1, 7, 13, 35, 31, 97, 57, 155, 130, 227, 133, 497, 183, 413, 418, 651, 307, 988, 381, 1155, 762, 953, 553, 2225, 806, 1307, 1210, 2093, 871, 3242, 993, 2667, 1762, 2183, 1802, 5096, 1407, 2705, 2418, 5155, 1723, 5858
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For p prime: a(p) = 1 + p + p^2, a(A000040(k)) = A060800(k).
Total area of all s X t rectangles, where the (s,t) are the pairs of divisors of n such that 1 <= s <= t. For example, when n = 4, the rectangles are 1 X 1, 1 X 2, 1 X 4, 2 X 2, 2 X 4, and 4 X 4, whose total area is a(4) = 1*1 + 1*2 + 1*4 + 2*2 + 2*4 + 4*4 = 35.  Wesley Ivan Hurt, Nov 15 2021


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = (1/2)*(sigma_1(n)^2 + sigma_2(n)), cf. A000203, A001157.


EXAMPLE

a(6) = 1*1+1*2+1*3+1*6+2*2+2*3+2*6+3*3+3*6+6*6 = 1+2+3+6+4+6+12+9+18+36 = 97.


MATHEMATICA

Table[(DivisorSigma[1, n]^2+DivisorSigma[2, n])/2, {n, 50}] (* Harvey P. Dale, Jan 31 2015 *)


PROG

(PARI) a(n)=my(D=sigma(n)); sumdiv(n, t, D=t; t*(D+t)) \\ Charles R Greathouse IV, Aug 21 2011
(PARI) a(n)=(sigma(n)^2+sigma(n, 2))/2 \\ Charles R Greathouse IV, Aug 21 2011


CROSSREFS

Cf. A000040, A000203, A001157, A060800.
Sequence in context: A334783 A060983 A001001 * A117706 A066673 A307762
Adjacent sequences: A067689 A067690 A067691 * A067693 A067694 A067695


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Feb 04 2002


STATUS

approved



