Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 15 2023 06:19:21
%S 1,7,13,35,31,97,57,155,130,227,133,497,183,413,418,651,307,988,381,
%T 1155,762,953,553,2225,806,1307,1210,2093,871,3242,993,2667,1762,2183,
%U 1802,5096,1407,2705,2418,5155,1723,5858
%N a(n) = Sum_{0 < d <= t <= n, d|n, t|n} d*t.
%C Total area of all s X t rectangles, where the (s,t) are the pairs of divisors of n such that 1 <= s <= t. For example, when n = 4, the rectangles are 1 X 1, 1 X 2, 1 X 4, 2 X 2, 2 X 4, and 4 X 4, whose total area is a(4) = 1*1 + 1*2 + 1*4 + 2*2 + 2*4 + 4*4 = 35. - _Wesley Ivan Hurt_, Nov 15 2021
%H Charles R Greathouse IV, <a href="/A067692/b067692.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = (1/2)*(sigma_1(n)^2 + sigma_2(n)), cf. A000203, A001157.
%F For p prime: a(p) = 1 + p + p^2, a(A000040(k)) = A060800(k).
%F Sum_{k=1..n} a(k) = (7/12)*zeta(3) * n^3 + O(n^2*log(n)^2). - _Amiram Eldar_, Dec 15 2023
%e a(6) = 1*1+1*2+1*3+1*6+2*2+2*3+2*6+3*3+3*6+6*6 = 1+2+3+6+4+6+12+9+18+36 = 97.
%t Table[(DivisorSigma[1,n]^2+DivisorSigma[2,n])/2,{n,50}] (* _Harvey P. Dale_, Jan 31 2015 *)
%o (PARI) a(n)=my(D=sigma(n));sumdiv(n,t,D-=t;t*(D+t)) \\ _Charles R Greathouse IV_, Aug 21 2011
%o (PARI) a(n)=(sigma(n)^2+sigma(n,2))/2 \\ _Charles R Greathouse IV_, Aug 21 2011
%Y Cf. A000040, A000203, A001157, A002117, A060800.
%K nonn,easy
%O 1,2
%A _Reinhard Zumkeller_, Feb 04 2002