login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067694
Minimum number of distinct parts in a self-conjugate partition of n, or 0 if n=2.
2
0, 1, 0, 2, 1, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3
OFFSET
0,4
COMMENTS
There are no self-conjugate partitions of 2, so we set a(2)=0.
LINKS
FORMULA
a(0)=a(2)=0; a(n^2)=1; a(4n+2)=3 for n>0; a(n)=2 in all other cases.
MATHEMATICA
a[0]=a[2]=0; a[n_] := Which[IntegerQ[Sqrt[n]], 1, Mod[n, 4]==2, 3, True, 2]
PROG
(PARI) A067694(n) = if((2==n)||!n, 0, if(2==(n%4), 3, if(issquare(n), 1, 2))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
Sequence in context: A178412 A182598 A331084 * A131810 A365143 A233519
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 05 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 15 2002
STATUS
approved