

A067694


Minimum number of distinct parts in a selfconjugate partition of n, or 0 if n=2.


2



0, 1, 0, 2, 1, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

There are no selfconjugate partitions of 2, so we set a(2)=0.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537


FORMULA

a(0)=a(2)=0; a(n^2)=1; a(4n+2)=3 for n>0; a(n)=2 in all other cases.


MATHEMATICA

a[0]=a[2]=0; a[n_] := Which[IntegerQ[Sqrt[n]], 1, Mod[n, 4]==2, 3, True, 2]


PROG

(PARI) A067694(n) = if((2==n)!n, 0, if(2==(n%4), 3, if(issquare(n), 1, 2))); \\ Antti Karttunen, Sep 27 2018


CROSSREFS

Cf. A000700, A067731.
Sequence in context: A178412 A182598 A331084 * A131810 A233519 A192295
Adjacent sequences: A067691 A067692 A067693 * A067695 A067696 A067697


KEYWORD

easy,nonn


AUTHOR

Naohiro Nomoto, Feb 05 2002


EXTENSIONS

Edited by Dean Hickerson, Feb 15 2002


STATUS

approved



