login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307762
L.g.f.: log(Product_{k>=1} (1 + x^k/(1 + x))) = Sum_{k>=1} a(k)*x^k/k.
1
1, -1, 7, -13, 36, -67, 141, -269, 547, -1076, 2146, -4231, 8399, -16661, 33177, -66109, 131921, -263353, 526054, -1051108, 2100840, -4199614, 8396289, -16788239, 33570311, -67131715, 134250784, -268483361, 536940598, -1073843297, 2147631641, -4295183165, 8590249609, -17180328793
OFFSET
1,3
FORMULA
Product {k>=1} (1 + x^k/(1 + x)) = exp(Sum_{k>=1} a(k)*x^k/k).
EXAMPLE
L.g.f.: L(x) = x/1 - x^2/2 + 7*x^3/3 - 13*x^4/4 + 36*x^5/5 - 67*x^6/6 + 141*x^7/7 - 269*x^8/8 + ... .
exp(L(x)) = 1 + x + 2*x^3 - x^4 + 4*x^5 - 2*x^6 + 5*x^7 - x^8 + ... + A307602(n)*x^n + ... .
PROG
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(log(prod(k=1, N, 1+x^k/(1+x)))))
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)/(d*(1+x)^d)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 27 2019
STATUS
approved