OFFSET
1,3
FORMULA
Product {k>=1} (1 + x^k/(1 + x)) = exp(Sum_{k>=1} a(k)*x^k/k).
EXAMPLE
L.g.f.: L(x) = x/1 - x^2/2 + 7*x^3/3 - 13*x^4/4 + 36*x^5/5 - 67*x^6/6 + 141*x^7/7 - 269*x^8/8 + ... .
exp(L(x)) = 1 + x + 2*x^3 - x^4 + 4*x^5 - 2*x^6 + 5*x^7 - x^8 + ... + A307602(n)*x^n + ... .
PROG
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(log(prod(k=1, N, 1+x^k/(1+x)))))
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)/(d*(1+x)^d)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 27 2019
STATUS
approved