OFFSET
1,1
COMMENTS
Number of terms in A054969 with exactly n digits.
LINKS
G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.
EXAMPLE
There are only two 4-digit hexagonal numbers that are palindromic, 3003 and 5995. Thus, a(4)=2.
MATHEMATICA
A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151}; Table[Length[ Select[A054969, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 19}]
PROG
(Python)
def afind(terms):
m, n, c = 0, 1, 0
while n <= terms:
p = m*(2*m-1)
s = str(p)
if len(s) == n:
if s == s[::-1]: c += 1
else:
print(c, end=", ")
n, c = n+1, int(s == s[::-1])
m += 1
afind(14) # Michael S. Branicky, Mar 01 2021
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Robert Price, Apr 27 2019
EXTENSIONS
a(20)-a(22) from Michael S. Branicky, Mar 01 2021
STATUS
approved