login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307766
Number of palindromic hexagonal numbers of length n whose index is also palindromic.
2
3, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Is there a nonzero term beyond a(7)?
LINKS
P. De Geest, Palindromic Squares
Eric Weisstein's World of Mathematics, Palindromic Number
EXAMPLE
There is only one palindromic hexagonal number of length 4 whose index is also palindromic, 55->5995. Thus, a(4)=1.
MATHEMATICA
A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151};
A054970 = {0, 1, 2, 6, 39, 55, 87, 182, 556, 644, 797, 917, 1593, 1685, 25141, 51425, 55556, 83527, 810311, 1620213, 1853942, 5555556, 17352586, 17835196, 25004441, 91071921, 170563673, 181737182, 184252876, 507354403, 1240058219, 1783816196, 2756800387};
Table[Length[ Select[A054970[[Table[ Select[Range[18], IntegerLength[A054969[[#]]] == n || (n == 1 && A054969[[#]] == 0) &], {n, 19}][[n]]]], PalindromeQ[#] &]], {n, 19}]
KEYWORD
nonn,base,hard,more
AUTHOR
Robert Price, Apr 27 2019
STATUS
approved