The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265314 Triangle read by rows, the numerators of the Bell transform of B(n,1) where B(n,x) are the Bernoulli polynomials. 3
 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 0, 17, 3, 1, 0, -1, 5, 65, 5, 1, 0, 0, 7, 55, 175, 15, 1, 0, 1, -7, 2023, 245, 385, 21, 1, 0, 0, -38, 49, 34181, 595, 371, 14, 1, 0, -1, 3, -14351, 973, 56567, 525, 217, 18, 1, 0, 0, 99, -19, 10637, 13601, 208859, 2415, 355, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS For the definition of the Bell transform see A264428 and the link given there. LINKS EXAMPLE 1, 0,  1, 0,  1,   1, 0,  1,   3,      1, 0,  0,  17,      3,     1, 0, -1,   5,     65,     5,     1, 0,  0,   7,     55,   175,    15,   1, 0,  1,  -7,   2023,   245,   385,  21,   1, 0,  0, -38,     49, 34181,   595, 371,  14,  1, 0, -1,   3, -14351,   973, 56567, 525, 217, 18, 1. MAPLE A265314_triangle := proc(n) local B, C, k; B := BellMatrix(x -> bernoulli(x, 1), n); # see A264428 for k from 1 to n do    C := LinearAlgebra:-Row(B, k):    print(seq(numer(C[j]), j=1..k)) od end: A265314_triangle(10); MATHEMATICA BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[x, BernoulliB[x, 1]], rows]; Table[B[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, from Maple *) CROSSREFS Cf. A265315 for the denominators, A265602 and A265603 for B(2n,1). Cf. A027641 and A164555 (column 1). Sequence in context: A264429 A324163 A127537 * A307791 A307766 A025443 Adjacent sequences:  A265311 A265312 A265313 * A265315 A265316 A265317 KEYWORD sign,tabl,frac AUTHOR Peter Luschny, Jan 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 17:39 EDT 2022. Contains 356148 sequences. (Running on oeis4.)