login
A265315
Triangle read by rows, the denominators of the Bell transform of B(n,1) where B(n,x) are the Bernoulli polynomials.
3
1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 12, 1, 1, 1, 30, 6, 12, 1, 1, 1, 1, 90, 8, 12, 2, 1, 1, 42, 20, 360, 8, 12, 2, 1, 1, 1, 315, 45, 720, 6, 6, 1, 1, 1, 30, 7, 3780, 20, 240, 2, 2, 1, 1, 1, 1, 350, 7, 756, 32, 240, 4, 2, 2, 1, 1, 66, 12, 6300, 1512, 6048, 96, 240, 4, 1, 2, 1
OFFSET
0,5
COMMENTS
For the definition of the Bell transform see A264428 and the link given there.
EXAMPLE
1,
1, 1,
1, 2, 1,
1, 6, 2, 1,
1, 1, 12, 1, 1,
1, 30, 6, 12, 1, 1,
1, 1, 90, 8, 12, 2, 1,
1, 42, 20, 360, 8, 12, 2, 1,
1, 1, 315, 45, 720, 6, 6, 1, 1,
1, 30, 7, 3780, 20, 240, 2, 2, 1, 1,
1, 1, 350, 7, 756, 32, 240, 4, 2, 2, 1.
MAPLE
A265315_triangle := proc(n) local B, C, k;
B := BellMatrix(x -> bernoulli(x, 1), n); # see A264428
for k from 1 to n do
C := LinearAlgebra:-Row(B, k):
print(seq(denom(C[j]), j=1..k))
od end:
A265315_triangle(12);
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[x, BernoulliB[x, 1]], rows];
Table[B[[n, k]] // Denominator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, from Maple *)
CROSSREFS
Cf. A265314 for the numerators, A265602 and A265603 for B(2n,1).
Cf. A027642 (column 1).
Sequence in context: A322128 A125731 A123361 * A179380 A107106 A178249
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, Jan 22 2016
STATUS
approved