The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123361 Triangle read by rows: T(n,k) = coefficient of x^k in the polynomial p[n,x] defined by p[0,x]=1, p[1,x]=1+x and p[n,x]=(1+x)(2-x)(3-x)...(n-x) for n >= 2 (0 <= k <= n). 2
 1, 1, 1, 2, 1, -1, 6, 1, -4, 1, 24, -2, -17, 8, -1, 120, -34, -83, 57, -13, 1, 720, -324, -464, 425, -135, 19, -1, 5040, -2988, -2924, 3439, -1370, 268, -26, 1, 40320, -28944, -20404, 30436, -14399, 3514, -476, 34, -1, 362880, -300816, -154692, 294328, -160027, 46025, -7798, 782, -43, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Changing the initial conditions in the recursion produces a different triangular sequence. The result here is a variation of Stirling's numbers of the first kind. The Chang and Sederberg version of this recursion produces an even function in sections. REFERENCES Chang and Sederberg, Over and Over Again, MAA, 1997, page 209 (Moving Averages). LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened EXAMPLE Triangle begins: 1; 1, 1; 2, 1, -1; 6, 1, -4, 1; 24, -2, -17, 8, -1; 120, -34, -83, 57, -13, 1; 720, -324, -464, 425, -135, 19, -1; 5040, -2988, -2924, 3439, -1370, 268, -26, 1; MAPLE p[0]:=1: p[1]:=1+x: for n from 2 to 10 do p[n]:=sort(expand((n-x)*p[n-1])) od: for n from 0 to 10 do seq(coeff(p[n], x, k), k=0..n) od; # yields sequence in triangular form MATHEMATICA p[ -1, x] = 1; p[0, x] = x + 1; p[k_, x_] := p[k, x] = (-x + k + 1)*p[k - 1, x] w = Table[CoefficientList[p[n, x], x], {n, -1, 10}]; Flatten[w] CROSSREFS Cf. A008275. Sequence in context: A181538 A322128 A125731 * A265315 A179380 A107106 Adjacent sequences: A123358 A123359 A123360 * A123362 A123363 A123364 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Nov 09 2006 EXTENSIONS Edited by N. J. A. Sloane, Nov 24 2006, Jun 17 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 10:22 EDT 2024. Contains 371967 sequences. (Running on oeis4.)