Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 26 2018 04:54:20
%S 1,0,1,0,1,1,0,1,3,1,0,0,17,3,1,0,-1,5,65,5,1,0,0,7,55,175,15,1,0,1,
%T -7,2023,245,385,21,1,0,0,-38,49,34181,595,371,14,1,0,-1,3,-14351,973,
%U 56567,525,217,18,1,0,0,99,-19,10637,13601,208859,2415,355,45,1
%N Triangle read by rows, the numerators of the Bell transform of B(n,1) where B(n,x) are the Bernoulli polynomials.
%C For the definition of the Bell transform see A264428 and the link given there.
%e 1,
%e 0, 1,
%e 0, 1, 1,
%e 0, 1, 3, 1,
%e 0, 0, 17, 3, 1,
%e 0, -1, 5, 65, 5, 1,
%e 0, 0, 7, 55, 175, 15, 1,
%e 0, 1, -7, 2023, 245, 385, 21, 1,
%e 0, 0, -38, 49, 34181, 595, 371, 14, 1,
%e 0, -1, 3, -14351, 973, 56567, 525, 217, 18, 1.
%p A265314_triangle := proc(n) local B,C,k;
%p B := BellMatrix(x -> bernoulli(x,1), n); # see A264428
%p for k from 1 to n do
%p C := LinearAlgebra:-Row(B,k):
%p print(seq(numer(C[j]), j=1..k))
%p od end:
%p A265314_triangle(10);
%t BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t rows = 12;
%t B = BellMatrix[Function[x, BernoulliB[x, 1]], rows];
%t Table[B[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 26 2018, from Maple *)
%Y Cf. A265315 for the denominators, A265602 and A265603 for B(2n,1).
%Y Cf. A027641 and A164555 (column 1).
%K sign,tabl,frac
%O 0,9
%A _Peter Luschny_, Jan 22 2016