login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290947
Primes p1 > 3, such that p2 = 3p1-2 and p3 = (p1*p2+1)/2 are also primes, so p1*p2*p3 is a triangular 3-Carmichael number.
2
7, 13, 37, 43, 61, 193, 211, 271, 307, 331, 601, 673, 727, 757, 823, 1063, 1297, 1447, 1597, 1621, 1657, 1693, 2113, 2281, 2347, 2437, 2503, 3001, 3067, 3271, 3733, 4093, 4201, 4957, 5581, 6073, 6607, 7321, 7333, 7723, 7867, 8287, 8581, 8647, 9643, 10243
OFFSET
1,1
COMMENTS
The primes are of the form p1=(6k+1), p2=(18k+1), and p3=(54k^2+12k+1), with k = 1, 2, 6, 7, 10, 32, 35, 45, 51, 55, 100, ...
The generated triangular 3-Carmichael numbers are: 8911, 115921, 8134561, 14913991, 60957361, 6200691841, 8863329511, 24151953871, 39799655911, 53799052231, 585796503601, ...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
p1 = 7 is in the sequence since with p2 = 3*7-2 = 19 and p3 = (7*19+1)/2 = 67 they are all primes. 7*19*67 = 8911 is a triangular 3-Carmichael number.
MATHEMATICA
seq = {}; Do[p1 = 6 k + 1; p2 = 3 p1 - 2; p3 = (p1*p2 + 1)/2;
If[AllTrue[{p1, p2, p3}, PrimeQ], AppendTo[seq, p1]], {k, 1,
2000}]; seq
PROG
(PARI) list(lim)=my(v=List()); forprime(p=7, lim, if(isprime(3*p-2) && isprime((p*(3*p-2)+1)/2), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 14 2017
STATUS
approved