login
A290945
Triangular Carmichael numbers.
3
561, 8911, 10585, 41041, 115921, 314821, 334153, 6313681, 8134561, 14913991, 32914441, 60957361, 67902031, 135556345, 289766701, 321197185, 329769721, 368113411, 471905281, 765245881, 842202361, 962442001, 1507746241, 2489462641, 2588653081, 3104207821
OFFSET
1,1
COMMENTS
Intersection of A000217 and A002997.
The least triangular Carmichael numbers with the number of prime factors = 3, 4, 5, 6, 7, ... are: 561, 41041, 765245881, 321197185, 1583892181303201, ...
The number of terms below 10^k for k = 3, 4, ... are: 1, 2, 4, 7, 9, 13, 22, 32, 53, 77, 137, 211, 358, 545, 879, 1423, ...
Jonathan Vos Post discovered in 2004 that a(21) = 842202361 = A000217(41041) = A002817(286) is also a doubly triangular Carmichael number. The next number with this property is a(1108) = 292800629576356021 = A000217(765245881) = A002817(39121) (41041 and 765245881 are triangular Carmichael numbers that are also indices of triangular numbers that are also Carmichael numbers).
LINKS
EXAMPLE
8911 = A000217(133) = A002997(7) therefore 8911 is in the sequence.
MATHEMATICA
seqQ[n_]:=IntegerQ[Sqrt[8n+1]] && !PrimeQ[n] && (Mod[n, CarmichaelLambda[n]] == 1); Select[Range[10^6], seqQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 14 2017
STATUS
approved