login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290485
The largest 3-Carmichael number that is divisible by the n-th odd prime.
0
561, 10585, 52633, 561, 530881, 7207201, 1024651, 1615681, 5444489, 471905281, 36765901, 2489462641, 564651361, 958762729, 17316001, 178837201, 1574601601, 7991602081, 597717121, 962442001, 4461725581, 167385219121, 43286923681, 4523928001, 5755495201
OFFSET
1,1
COMMENTS
Beeger proved in 1950 that if p < q < r are primes such that p*q*r is a Carmichael number, then q < 2p^2 and r < p^3. Therefore there is a finite number of 3-Carmichael numbers which divisible by a given prime.
The terms were calculated using Pinch's tables of Carmichael numbers (see link below).
REFERENCES
N. G. W. H. Beeger, "On composite numbers n for which a^n == 1 (mod n) for every a prime to n", Scripta Mathematica, Vol. 16 (1950), pp. 133-135.
CROSSREFS
Cf. A065091 (odd primes), A087788 (3-Carmichael numbers), A141706.
Sequence in context: A290945 A063400 A141706 * A213071 A232761 A232755
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 03 2017
STATUS
approved