The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207080 The smallest Carmichael number k such that phi(k) does not divide (k-1)^n, where phi is the Euler totient function. 2
 561, 2821, 838201, 41471521, 45496270561, 776388344641, 344361421401361, 375097930710820681, 330019822807208371201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: phi(a(n)) divides (a(n)-1)^(n+1). a(10) <= 9645020063586019926451. - Daniel Suteu, Dec 25 2020 LINKS José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers, 12(2012), #A37. Nathan McNew, Radically weakening the Lehmer and Carmichael conditions (2012). PROG (PARI) is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1; } isok(k, n) = ((k-1)^n % eulerphi(k)) != 0; a(n) = my(k=1); while (!(is_c(k) && isok(k, n)), k++); k; \\ Michel Marcus, Dec 25 2020 CROSSREFS Cf. A000010, A002997 (Carmichael numbers), A173703. Sequence in context: A293622 A322130 A354609 * A339875 A290945 A063400 Adjacent sequences:  A207077 A207078 A207079 * A207081 A207082 A207083 KEYWORD nonn,more AUTHOR José María Grau Ribas, Feb 15 2012 EXTENSIONS a(7)-a(9) from Richard Pinch, Feb 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 21:39 EDT 2022. Contains 355995 sequences. (Running on oeis4.)