login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173703
Composite numbers n with the property that phi(n) divides (n-1)^2.
9
561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, 46657, 50881, 52633, 71905, 75361, 88561, 93961, 115921, 126673, 162401, 172081, 193249, 247105, 334153, 340561, 378561, 449065, 460801, 574561, 656601, 658801, 670033
OFFSET
1,1
COMMENTS
All terms are odd because if n is even, (n-1)^2 is odd and phi(n) is even for n > 2. - Donovan Johnson, Sep 08 2013
McNew showed that the number of terms in this sequence below x is O(x^(6/7)). - Tomohiro Yamada, Sep 28 2020
LINKS
Joerg Arndt and Donovan Johnson, Table of n, a(n) for n = 1..2000 (first 327 terms from Joerg Arndt)
José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers, 12(2012), #A37
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, International Journal of Number Theory 9 (2013), 1215-1224; available from arXiv, arXiv:1210.2001 [math.NT], 2012.
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 4, 2013.
EXAMPLE
a(1) = 561 is in the sequence because 560^2 = phi(561)*980 = 320*980 = 313600.
MAPLE
isA173703 := proc(n)
n <> 1 and not isprime(n) and (modp( (n-1)^2, numtheory[phi](n)) = 0 );
end proc:
for n from 1 to 10000 do
if isA173703(n) then
printf("%d, \n", n);
end if;
end do: # R. J. Mathar, Nov 06 2017
MATHEMATICA
Union[Table[If[PrimeQ[n] === False && IntegerQ[(n-1)^2/EulerPhi[n]], n], {n, 3, 100000}]]
Select[Range[700000], CompositeQ[#]&&Divisible[(#-1)^2, EulerPhi[#]]&] (* Harvey P. Dale, Nov 29 2014 *)
Select[Range[1, 700000, 2], CompositeQ[#]&&PowerMod[#-1, 2, EulerPhi[ #]] == 0&] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI)
N=10^9;
default(primelimit, N);
ct = 0;
{ for (n=4, N,
if ( ! isprime(n),
if ( ( (n-1)^2 % eulerphi(n) ) == 0,
ct += 1;
print(ct, " ", n);
);
);
); }
/* Joerg Arndt, Jun 23 2012 */
CROSSREFS
Cf. A238574 (k-Lehmer numbers for some k).
Sequence in context: A355039 A087788 A376485 * A306338 A367320 A300629
KEYWORD
nonn
AUTHOR
STATUS
approved