login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173704
Partial sums of floor(n^3/2).
1
0, 0, 4, 17, 49, 111, 219, 390, 646, 1010, 1510, 2175, 3039, 4137, 5509, 7196, 9244, 11700, 14616, 18045, 22045, 26675, 31999, 38082, 44994, 52806, 61594, 71435, 82411, 94605, 108105, 123000, 139384, 157352, 177004, 198441, 221769, 247095, 274531, 304190, 336190, 370650, 407694, 447447, 490039, 535601, 584269, 636180, 691476, 750300, 812800
OFFSET
0,3
COMMENTS
Partial sums of A036487.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = Sum_{k=0..n} floor(k^3/2).
a(n) = round((n^4+2*n^3+n^2-2*n)/8).
a(n) = round((n^4+2*n^3+n^2-2*n-1)/8).
a(n) = floor((n^4+2*n^3+n^2-2*n)/8).
a(n) = ceiling((n-1)*(n+1)*(n^2+2*n+2)/8).
a(n) = a(n-2)+(n-1)*(2*n^2-n+2)/2, n>1.
From R. J. Mathar, Nov 26 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: -x^2*(4+x+x^2) / ( (1+x)*(x-1)^5 ).
a(n) = (n^4 + 2*n^3 + n^2 - 2*n - 1 + (-1)^n)/8. (End)
EXAMPLE
a(4) = floor(1/2) + floor(8/2) + floor(27/2) + floor(64/2) = 49.
MAPLE
A173704 := proc(n) (n^4+2*n^3+n^2-2*n-1+(-1)^n)/8 ; end proc:
MATHEMATICA
Table[Sum[Floor[k^3/2], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Nov 23 2016 *)
PROG
(Magma) [Round((n^4+2*n^3+n^2-2*n)/8): n in [0..40]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
Cf. A036487.
Sequence in context: A213502 A273334 A273766 * A297817 A184445 A334694
KEYWORD
nonn
AUTHOR
Mircea Merca, Nov 25 2010
EXTENSIONS
Maple program replaced by R. J. Mathar, Nov 26 2010
STATUS
approved