OFFSET
0,3
COMMENTS
Partial sums of A036487.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
FORMULA
a(n) = Sum_{k=0..n} floor(k^3/2).
a(n) = round((n^4+2*n^3+n^2-2*n)/8).
a(n) = round((n^4+2*n^3+n^2-2*n-1)/8).
a(n) = floor((n^4+2*n^3+n^2-2*n)/8).
a(n) = ceiling((n-1)*(n+1)*(n^2+2*n+2)/8).
a(n) = a(n-2)+(n-1)*(2*n^2-n+2)/2, n>1.
From R. J. Mathar, Nov 26 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: -x^2*(4+x+x^2) / ( (1+x)*(x-1)^5 ).
a(n) = (n^4 + 2*n^3 + n^2 - 2*n - 1 + (-1)^n)/8. (End)
EXAMPLE
a(4) = floor(1/2) + floor(8/2) + floor(27/2) + floor(64/2) = 49.
MAPLE
A173704 := proc(n) (n^4+2*n^3+n^2-2*n-1+(-1)^n)/8 ; end proc:
MATHEMATICA
Table[Sum[Floor[k^3/2], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Nov 23 2016 *)
PROG
(Magma) [Round((n^4+2*n^3+n^2-2*n)/8): n in [0..40]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Mircea Merca, Nov 25 2010
EXTENSIONS
Maple program replaced by R. J. Mathar, Nov 26 2010
STATUS
approved