

A207079


The only nonunique differences between powers of 3 and 2.


5




OFFSET

1,2


COMMENTS

The sequence is finite, this fact is a theorem in [Bennet2004].
1 = 32 = 3^22^3 = 2^23.
5 = 3^22^2 = 2^33 = 2^5  3^3.
7 = 2^43^2 = 3^2  2.
13 = 2^43 = 2^8  3^5.
23 = 3^3  2^2 = 2^5  3^2.


LINKS

Table of n, a(n) for n=1..5.
M. A. Bennett, Pillai's conjecture revisited, J. Number Theory 98 (2003), 228235.
Douglas Edward Iannucci, On duplicate representations as 2^x+3^y for nonnegative integers x and y, arXiv:1907.03347 [math.NT], 2019. Mentions this sequence.


FORMULA

A219551(a(n)) > 1.  Jonathan Sondow, Dec 10 2012


CROSSREFS

Cf. A053289, A074981, A076438, A219551.
Sequence in context: A314330 A349576 A022319 * A167798 A165815 A216738
Adjacent sequences: A207076 A207077 A207078 * A207080 A207081 A207082


KEYWORD

nonn,bref,fini,full


AUTHOR

Gottfried Helms, Feb 15 2012


STATUS

approved



