The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349576 Recurrence a(1) = 1, a(2) = 5; a(n) = (a(n-1) + a(n-2))/GCD(a(n-1),a(n-2)) + 1. 1
 1, 5, 7, 13, 21, 35, 9, 45, 7, 53, 61, 115, 177, 293, 471, 765, 413, 1179, 1593, 309, 635, 945, 317, 1263, 1581, 949, 2531, 3481, 6013, 9495, 15509, 25005, 40515, 4369, 44885, 49255, 18829, 68085, 86915, 31001, 117917, 148919, 266837, 415757, 682595, 1098353 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: this sequence is not periodic. (Note that the analogous sequences with a(2) = 1, 2, 3, or 4 are periodic.) LINKS Math Stack Exchange user Augusto Santi, Investigating the recurrence relation. PROG (Python) from itertools import islice from math import gcd def A349576_gen(): # generator of terms     blist = [1, 5]     yield from blist     while True:         blist = [blist[1], sum(blist)//gcd(*blist) + 1]         yield blist[-1] A349576_list = list(islice(A349576_gen(), 30)) # Chai Wah Wu, Jan 10 2022 CROSSREFS Sequence in context: A314329 A154872 A314330 * A022319 A207079 A167798 Adjacent sequences:  A349573 A349574 A349575 * A349577 A349578 A349579 KEYWORD nonn AUTHOR Peter Kagey, Dec 30 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 10:16 EDT 2022. Contains 353745 sequences. (Running on oeis4.)