login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334786 a(n) is the total number of down steps before the first up step in all 4_2-Dyck paths of length 5*n. A 4_2-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -2. 4
0, 3, 16, 115, 950, 8510, 80388, 788392, 7950930, 81935425, 859005840, 9132977490, 98240702586, 1067197649840, 11691092372000, 129011823098160, 1432744619523530, 16000911127589355, 179590878292003200, 2024687100104286525, 22917687021180660940 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.

FORMULA

a(0) = 0 and a(n) = 4 * binomial(5*n, n)/(n+1) - 2 * binomial(5*n+2, n)/(n+1) for n > 0.

EXAMPLE

For n = 1, there are the 4_2-Dyck paths UDDDD, DUDDD, DDUDD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.

MATHEMATICA

a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n+1) - 2 * Binomial[5*n+2, n]/(n+1); Array[a, 21, 0]

CROSSREFS

Cf. A001764, A002293, A002294, A334785, A334787.

Sequence in context: A329113 A042437 A324514 * A159606 A211210 A177402

Adjacent sequences:  A334783 A334784 A334785 * A334787 A334788 A334789

KEYWORD

nonn,easy

AUTHOR

Sarah Selkirk, May 11 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 09:38 EST 2020. Contains 338639 sequences. (Running on oeis4.)