login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263825
Total number c_{pi_1(B_1)}(n) of n-coverings over the first amphicosm.
7
1, 7, 5, 23, 7, 39, 9, 65, 18, 61, 13, 143, 15, 87, 35, 183, 19, 182, 21, 245, 45, 151, 25, 465, 38, 189, 58, 375, 31, 429, 33, 549, 65, 277, 63, 806, 39, 327, 75, 875, 43, 663, 45, 719, 126, 439, 49, 1535, 66, 650, 95, 933, 55, 982, 91, 1425, 105, 637, 61, 2093
OFFSET
1,2
LINKS
G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
G. Chelnokov, M. Deryagina and A. Mednykh, On the coverings of Euclidean manifolds B_1 and B_2, Communications in Algebra, Vol. 45, No. 4 (2017), 1558-1576.
MAPLE
A263825 := proc(n)
local a, l, m, s1, s2, s3, s4 ;
# Theorem 2
a := 0 ;
for l in numtheory[divisors](n) do
m := n/l ;
s1 := 0 ;
for twok in numtheory[divisors](m) do
if type(twok, 'even') then
k := twok/2 ;
s1 := s1+numtheory[sigma](k)*k ;
end if;
end do:
s2 := 0 ;
for d in numtheory[divisors](l) do
s2 := s2+numtheory[mobius](l/d)*d^2*igcd(2, d) ;
end do:
s3 := 0 ;
for k in numtheory[divisors](m) do
s3 := s3+numtheory[sigma](m/k)*k ;
if modp(m, 2*k) = 0 then
s3 := s3-numtheory[sigma](m/2/k)*k ;
end if;
end do:
s4 := 0 ;
for twok in numtheory[divisors](m) do
if type(twok, 'even') then
s4 := s4+numtheory[sigma](m/twok)*twok ;
if modp(m, 2*twok) = 0 then
s4 := s4-numtheory[sigma](m/2/twok)*twok ;
end if;
end if;
end do:
a := a+A059376(l)*s1 + s2*s3 + A007434(l)*s4 ;
end do:
a/n ;
end proc: # R. J. Mathar, Nov 03 2015
MATHEMATICA
A007434[n_] := Sum[ MoebiusMu[n/d] * d^2, {d, Divisors[n]}];
A059376[n_] := Sum[ MoebiusMu[n/d] * d^3, {d, Divisors[n]}];
A263825[n_] := Module[{a, l, m, s1, s2, s3, s4},
a = 0;
Do[m = n/l;
s1 = 0; Do[If[EvenQ[twok], k = twok/2; s1 = s1 + DivisorSigma[1, k]*k], {twok, Divisors[m]}];
s2 = 0; Do[s2 = s2 + MoebiusMu[l/d]*d^2*GCD[2, d], {d, Divisors[l]}];
s3 = 0; Do[s3 = s3 + DivisorSigma[1, m/k]*k ; If[Mod[m, 2*k] == 0, s3 = s3 - DivisorSigma[1, m/2/k]*k], {k, Divisors[m]}];
s4 = 0; Do[If[EvenQ[twok], s4 = s4 + DivisorSigma[1, m/twok]*twok; If[ Mod[m, 2*twok] == 0, s4 = s4 - DivisorSigma[1, m/2/twok]*twok]], {twok, Divisors[m]}]; a = a + A059376[l]*s1 + s2*s3 + A007434[l]*s4,
{l, Divisors[n]}]; a/n
];
Array[A263825, 60] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)
PROG
(PARI)
A001001(n) = sumdiv(n, d, sigma(d) * d);
A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
A060640(n) = sumdiv(n, d, sigma(n\d) * d);
EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d, 2));
S1(n) = if (n%2, 0, A001001(n\2));
S11(n) = A060640(n) - if(n%2, 0, A060640(n\2));
S21(n) = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
a(n) = { 1/n * sumdiv(n, d,
A059376(d) * S1(n\d) + EpiPcZn(d) * S11(n\d) + A007434(d) * S21(n\d));
};
vector(60, n, a(n)) \\ Gheorghe Coserea, May 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 28 2015
STATUS
approved