login
A263830
The number c_{Z^3,pi_1(B_2)}(2n) of 3-torus 2n-coverings over the second amphicosm.
7
1, 5, 9, 23, 19, 53, 33, 93, 74, 119, 73, 255, 99, 213, 219, 363, 163, 482, 201, 581, 393, 485, 289, 1085, 422, 663, 634, 1047, 451, 1463, 513, 1417, 897, 1103, 915, 2374, 723, 1365, 1227, 2511, 883, 2661, 969, 2399, 2078, 1973, 1153, 4419
OFFSET
1,2
LINKS
G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
MATHEMATICA
a[n_] := 1/2 Sum[Sum[(d^2 + 3/2 + 1/2 (-1)^Mod[d, 2] + (-1)^Mod[Quotient[n, d m], 2] + (-1)^Mod[d+Quotient[n, d m], 2])m, {m, Divisors[Quotient[n, d] ]}], {d, Divisors[n]}];
Array[a, 48] (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
PROG
(PARI)
a(n) = {
1/2 * sumdiv(n, d, sumdiv(n\d, m,
(sqr(d) + 3/2 + 1/2*(-1)^(d%2) + (-1)^((n\(d*m))%2) +
(-1)^((d + n\(d*m))%2)) * m));
};
vector(48, n, a(n)) \\ Gheorghe Coserea, May 05 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 28 2015
EXTENSIONS
More terms from Gheorghe Coserea, May 05 2016
STATUS
approved