login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263828
The number c_{P c pi_1(B_1)}(n) of the first amphicosm n-coverings over the first amphicosm.
2
1, 4, 5, 10, 7, 20, 9, 22, 18, 28, 13, 50, 15, 36, 35, 46, 19, 72, 21, 70, 45, 52, 25, 110, 38, 60, 58, 90, 31, 140, 33, 94, 65, 76, 63, 180, 39, 84, 75, 154, 43, 180, 45, 130, 126, 100, 49, 230, 66, 152, 95, 150, 55, 232, 91, 198, 105, 124, 61
OFFSET
1,2
LINKS
G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
MATHEMATICA
a[n_] := Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/d], {d, Divisors[ n]}] - If[OddQ[n], 0, Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/(2 d)], {d, Divisors[n/2]}]];
Array[a, 59] (* Jean-François Alcover, Oct 10 2018, after Gheorghe Coserea *)
PROG
(PARI)
a(n) = {
sumdiv(n, d, (3/2 + 1/2*(-1)^(d%2)) * sigma(n/d)) -
if (n%2, 0, sumdiv(n\2, d, (3/2 + 1/2*(-1)^(d%2))*sigma(n\(2*d))))
};
vector(59, n, a(n)) \\ Gheorghe Coserea, May 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 28 2015
EXTENSIONS
More terms from Gheorghe Coserea, May 04 2016
STATUS
approved