Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 10 2018 03:26:47
%S 1,4,5,10,7,20,9,22,18,28,13,50,15,36,35,46,19,72,21,70,45,52,25,110,
%T 38,60,58,90,31,140,33,94,65,76,63,180,39,84,75,154,43,180,45,130,126,
%U 100,49,230,66,152,95,150,55,232,91,198,105,124,61
%N The number c_{P c pi_1(B_1)}(n) of the first amphicosm n-coverings over the first amphicosm.
%H Gheorghe Coserea, <a href="/A263828/b263828.txt">Table of n, a(n) for n = 1..20000</a>
%H G. Chelnokov, M. Deryagina, A. Mednykh, <a href="http://arxiv.org/abs/1502.01528">On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2</a>, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
%t a[n_] := Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/d], {d, Divisors[ n]}] - If[OddQ[n], 0, Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/(2 d)], {d, Divisors[n/2]}]];
%t Array[a, 59] (* _Jean-François Alcover_, Oct 10 2018, after _Gheorghe Coserea_ *)
%o (PARI)
%o a(n) = {
%o sumdiv(n, d, (3/2 + 1/2*(-1)^(d%2)) * sigma(n/d)) -
%o if (n%2, 0, sumdiv(n\2, d, (3/2 + 1/2*(-1)^(d%2))*sigma(n\(2*d))))
%o };
%o vector(59, n, a(n)) \\ _Gheorghe Coserea_, May 04 2016
%Y Cf. A263825-A263830, A263832.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Oct 28 2015
%E More terms from _Gheorghe Coserea_, May 04 2016