login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145396
a(n) = Sum_{d|n} sigma(d) + 3*Sum_{2c|n} sigma(c).
2
1, 7, 5, 23, 7, 35, 9, 59, 18, 49, 13, 115, 15, 63, 35, 135, 19, 126, 21, 161, 45, 91, 25, 295, 38, 105, 58, 207, 31, 245, 33, 291, 65, 133, 63, 414, 39, 147, 75, 413, 43, 315, 45, 299, 126, 175, 49, 675, 66, 266, 95, 345, 55, 406, 91, 531, 105, 217, 61, 805, 63, 231, 162, 607
OFFSET
1,2
COMMENTS
Dirichlet convolution of [1,3,0,0,0,0,0,...] and A007429.
LINKS
J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Act. Cryst. A48 (1992), 500-508. See Table 1, symmetry P2/m.
FORMULA
Dirichlet g.f.: (1+3/2^s)*zeta(s-1)*(zeta(s))^2.
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 5*2^(e+1)-4*e-9, and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*Pi^4/288 = 2.367582... . (End)
MAPLE
with(numtheory);
g:=proc(n)
local d, c, b, t0, t1, t2, t3;
t1:=divisors(n);
t0:=add( sigma(d), d in t1);
t2:=0;
for d in t1 do if d mod 2 = 0 then t2:=t2+sigma(d/2); fi; od:
t0+3*t2;
end;
[seq(g(n), n=1..100)];
# alternative
nmax := 100 :
L27 := [seq(i, i=1..nmax) ];
L := [1, 3, seq(0, i=1..nmax)] ;
MOBIUSi(%) ;
MOBIUSi(%) ;
DIRICHLET(%, L27) ; # R. J. Mathar, Sep 25 2017
MATHEMATICA
a[n_] := Sum[DivisorSigma[1, d] + 3 Boole[Mod[d, 2] == 0] DivisorSigma[1, d/2], {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Apr 04 2020 *)
f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 5*2^(e + 1) - 4*e - 9; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 5*2^(f[i, 2]+1) - 4*f[i, 2] - 9, (f[i, 1]*(f[i, 1]^(f[i, 2]+1)-1) - (f[i, 1]-1)*(f[i, 2]+1))/(f[i, 1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022
CROSSREFS
Cf. A007429.
Sequence in context: A166639 A078747 A213835 * A263825 A226661 A120404
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Mar 13 2009
STATUS
approved