login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213247
Number of nonzero elements in GF(2^n) that are 11th powers.
8
1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
OFFSET
1,2
LINKS
FORMULA
a(n) = M / GCD( M, 11 ) where M=2^n-1.
From Colin Barker, Aug 24 2014: (Start)
a(n) = 1025*a(n-10)-1024*a(n-20).
G.f.: x*(512*x^18 +768*x^17 +896*x^16 +960*x^15 +992*x^14 +1008*x^13 +1016*x^12 +1020*x^11 +1022*x^10 +93*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (1024*x^20 -1025*x^10 +1).
(End)
a(n) = (2^n - 1)/11 if n is divisible by 10, 2^n - 1 otherwise. - Robert Israel, Aug 24 2014
MAPLE
A213247:=n->(2^n-1)/igcd(2^n-1, 11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
MATHEMATICA
Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
PROG
(Magma) [(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
(PARI) { for(n=1, 36, if(n%10, a=2^n-1, a=(2^n-1)/11); print1(a, ", ")) } \\ K. Spage, Aug 23 2014
CROSSREFS
Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213248 (13th powers).
Sequence in context: A116690 A267258 A305493 * A043755 A105755 A043764
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 07 2012
STATUS
approved