login
A213241
Numbers n for which n=(n'' mod n'), where n' and n'' are the first and second arithmetic derivative of n.
1
16, 20, 64, 108, 135, 164, 352, 432, 729, 1024, 1107, 2376, 2916, 6912, 12500, 15625, 16038, 16384, 19683, 43692, 46656, 47616, 50000, 84375, 110592, 128125, 188228, 275000, 294921, 314928, 321408, 337500, 746496, 800000, 1270539, 1856250
OFFSET
1,1
EXAMPLE
n=432, n'=1296, n''=4320 and 4320=1296*3+432.
MAPLE
with(numtheory);
A213241:= proc(i)
local a, b, n, p, pfs;
for n from 1 to i do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);
pfs:=ifactors(a)[2]; b:=a*add(op(2, p)/op(1, p), p=pfs);
pfs:=ifactors(b)[2]; c:=b*add(op(2, p)/op(1, p), p=pfs);
if a>0 then if (b mod a)=n then print(n); fi; fi;
od;
end:
A213241(10000000);
CROSSREFS
Sequence in context: A104010 A102544 A152022 * A219395 A260572 A240038
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 12 2012
STATUS
approved