login
A020522
a(n) = 4^n - 2^n.
41
0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
OFFSET
0,2
COMMENTS
Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
L. H. Harper, Optimal Assignment of Numbers to Vertices, J. SIAM 12(1), p. 131--135, March 1964; alternative link.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
The Sixtieth William Lowell Putnam Mathematical Competition, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
FORMULA
From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
EXAMPLE
n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
MAPLE
A020522:=n->4^n-2^n; seq(A020522(n), n=0..50); # Wesley Ivan Hurt, Nov 29 2013
MATHEMATICA
Table[4^n - 2^n, {n, 40}] (* or *) LinearRecurrence[{6, -8}, {0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
PROG
(Sage) [4^n - 2^n for n in range(0, 23)] # Zerinvary Lajos, Jun 05 2009
(Magma) [4^n - 2^n: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n-2^n \\ Charles R Greathouse IV, Jan 30 2012
(Haskell)
a020522 = (* 2) . a006516 -- Reinhard Zumkeller, Dec 15 2015
CROSSREFS
Ratio of successive terms of A028365.
Sequence in context: A006659 A194771 A127221 * A037130 A181298 A247121
KEYWORD
nonn,easy
STATUS
approved