|
|
A020522
|
|
a(n) = 4^n - 2^n.
|
|
37
|
|
|
0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..170
M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Tom Copeland, The Kervaire-Milnor formula
John Elias, Illustration of initial terms: Twin 2^n hexagonal numbers
L. H. Harper, Optimal Assignment of Numbers to Vertices, J. SIAM 12(1), p. 131--135, March 1964; alternative link.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
The Sixtieth William Lowell Putnam Mathematical Competition, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
Index entries for linear recurrences with constant coefficients, signature (6,-8).
|
|
FORMULA
|
From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
|
|
EXAMPLE
|
n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
|
|
MAPLE
|
A020522:=n->4^n-2^n; seq(A020522(n), n=0..50); # Wesley Ivan Hurt, Nov 29 2013
|
|
MATHEMATICA
|
Table[4^n - 2^n, {n, 40}] (* or *) LinearRecurrence[{6, -8}, {0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
|
|
PROG
|
(Sage) [4^n - 2^n for n in range(0, 23)] # Zerinvary Lajos, Jun 05 2009
(Magma) [4^n - 2^n: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n-2^n \\ Charles R Greathouse IV, Jan 30 2012
(Haskell)
a020522 = (* 2) . a006516 -- Reinhard Zumkeller, Dec 15 2015
|
|
CROSSREFS
|
Ratio of successive terms of A028365.
Cf. A000225, A060867, A161168, A006516, A059153, A065442.
Cf. A000079, A265736.
Sequence in context: A006659 A194771 A127221 * A037130 A181298 A247121
Adjacent sequences: A020519 A020520 A020521 * A020523 A020524 A020525
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|