login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A020524
a(n) = 4th Euler polynomial evaluated at 2^n.
4
0, 2, 132, 3080, 57360, 983072, 16252992, 264241280, 4261413120, 68451041792, 1097364145152, 17575006177280, 281337537761280, 4502500115750912, 72048797944922112, 1152851135862702080, 18446181123756195840, 295143401579725586432, 4722330454072626511872
OFFSET
0,2
FORMULA
From Colin Barker, May 04 2015: (Start)
a(n) = 2^n-2^(1+3*n)+16^n.
a(n) = 26*a(n-1)-176*a(n-2)+256*a(n-3) for n>2.
G.f.: -2*x*(40*x+1) / ((2*x-1)*(8*x-1)*(16*x-1)).
(End)
MAPLE
seq(euler(4, 2^n), n=0..24);
MATHEMATICA
Table[EulerE[4, 2^n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(PARI) concat(0, Vec(-2*x*(40*x+1)/((2*x-1)*(8*x-1)*(16*x-1)) + O(x^100))) \\ Colin Barker, May 04 2015
CROSSREFS
Sequence in context: A071606 A080282 A131931 * A157071 A174585 A186194
KEYWORD
nonn,easy
AUTHOR
STATUS
approved