The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157071 Number of integer sequences of length n+1 with sum zero and sum of absolute values 44. 1
 2, 132, 4842, 124410, 2468160, 39944058, 546468188, 6480461988, 67871267730, 636929126680, 5418075931842, 42175511270802, 302809501559292, 2018756213756730, 12569156781338280, 73453463921029288, 404681030359774038, 2110083485993094708, 10449172010467254110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (45,-990,14190,-148995,1221759,-8145060,45379620, -215553195,886163135,-3190187286,10150595910,-28760021745,73006209045, -166871334960,344867425584,-646626422970,1103068603890,-1715884494940, 2438362177020,-3169870830126,3773655750150,-4116715363800,4116715363800, -3773655750150,3169870830126,-2438362177020,1715884494940,-1103068603890, 646626422970,-344867425584,166871334960,-73006209045,28760021745,-10150595910, 3190187286,-886163135,215553195,-45379620,8145060,-1221759,148995,-14190,990, -45,1). FORMULA a(n) = T(n,22); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k). From G. C. Greubel, Jan 25 2022: (Start) a(n) = (n+1)*binomial(n+21, 22)*Hypergeometric3F2([-21, -n, 1-n], [2, -n-21], 1). a(n) = (2104098963720/44!)*n*(n+1)*(57426256183845078403920019272499200000000 + 154523331049862061871920722844057600000000*n + 272931042730182050308953933852180480000000*n^2 + 274811760152840277181518317732914790400000*n^3 + 238572405346744756522223079981931560960000*n^4 + 139262369052198098042953067132860760064000*n^5 + 77935938615959415459621013175403479040000*n^6 + 30604426182364394781448082978276352983040*n^7 + 12375921432622844665839937493301408202752*n^8 + 3525862191155367176504575677468901072896*n^9 + 1098754428098133845773800888636057839616*n^10 + 237599556100490353222412641226382566400*n^11 + 59493628751502324229674305656594696704*n^12 + 10055545494420785177786806925755237632*n^13 + 2083707534251437187516974041889280512*n^14 + 280769227253093987663773439057969280*n^15 + 49222409547083603766449249805178816*n^16 + 5358702844213759492318438394124288*n^17 + 808545762040841563486050098435368*n^18 + 71737091194582402868575376736180*n^19 + 9444831471354374079538688193458*n^20 + 686249074150382462946936518949*n^21 + 79734029925781576979739452669*n^22 + 4751390699139789217700561850*n^23 + 491813838546810047652354440*n^24 + 23992407101881141905543345*n^25 + 2230301742551313936748845*n^26 + 88590052674638107230960*n^27 + 7447195060372280892588*n^28 + 238536111960173626074*n^29 + 18243176552448224154*n^30 + 464026161597715500*n^31 + 32458785389210936*n^32 + 640384199972538*n^33 + 41164050437258*n^34 + 607233703020*n^35 + 36020303474*n^36 + 373840257*n^37 + 20541577*n^38 + 133770*n^39 + 6832*n^40 + 21*n^41 + n^42). G.f.: 2*x*(1 + 21*x + 441*x^2 + 4410*x^3 + 44100*x^4 + 279300*x^5 + 1768900*x^6 + 7960050*x^7 + 35820225*x^8 + 121788765*x^9 + 414081801*x^10 + 1104218136*x^11 + 2944581696*x^12 + 6309817920*x^13 + 13521038400*x^14 + 23661817200*x^15 + 41408180100*x^16 + 59811815700*x^17 + 86394844900*x^18 + 103673813880*x^19 + 124408576656*x^20 + 124408576656*x^21 + 124408576656*x^22 + 103673813880*x^23 + 86394844900*x^24 + 59811815700*x^25 + 41408180100*x^26 + 23661817200*x^27 + 13521038400*x^28 + 6309817920*x^29 + 2944581696*x^30 + 1104218136*x^31 + 414081801*x^32 + 121788765*x^33 + 35820225*x^34 + 7960050*x^35 + 1768900*x^36 + 279300*x^37 + 44100*x^38 + 4410*x^39 + 441*x^40 + 21*x^41 + x^42)/(1-x)^45. (End) MATHEMATICA A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1]; A157071[n_]:= A103881[n, 22]; Table[A157071[n], {n, 50}] (* G. C. Greubel, Jan 25 2022 *) PROG (Sage) def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) ) def A157071(n): return A103881(n, 22) [A157071(n) for n in (1..50)] # G. C. Greubel, Jan 25 2022 CROSSREFS Cf. A103881, A156554. Sequence in context: A080282 A131931 A020524 * A174585 A186194 A099682 Adjacent sequences: A157068 A157069 A157070 * A157072 A157073 A157074 KEYWORD nonn AUTHOR R. H. Hardin, Feb 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)