|
|
A103881
|
|
Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.
|
|
29
|
|
|
1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 42, 18, 2, 1, 30, 110, 92, 24, 2, 1, 42, 240, 340, 162, 30, 2, 1, 56, 462, 1010, 780, 252, 36, 2, 1, 72, 812, 2562, 2970, 1500, 362, 42, 2, 1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48, 2, 1, 110, 2070, 11832, 26474, 27174, 14240, 4060, 642, 54, 2, 1, 132, 3080, 22530, 66222, 91112, 65226, 26070, 6040, 812, 60, 2
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
T(n,k) is the number of integer sequences of length n+1 with sum zero and sum of absolute values 2k. - R. H. Hardin, Feb 23 2009
|
|
LINKS
|
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
|
|
FORMULA
|
T(n,k) = Sum_{i=1..n} C(n+1, i)*C(k-1, i-1)*C(n-i+k, k), T(n,0)=1.
G.f. of n-th row: (Sum_{i=0..n} C(n, i)^2*x^i)/(1-x)^n.
T(n, k) = Sum_{j=0..n} binomial(n,j)^2 * binomial(n+k-j-1, n-1) (array).
T(n, k) = (n+1)*binomial(n+k-1,k)*hypergeometric([-n,1-n,1-k], [2,1-n-k], 1), with T(n, k) = 1 (array).
t(n, k) = (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1), with t(n, 0) = 1 (antidiagonals).
Sum_{k=0..n-1} t(n, k) = A047085(n). (End)
|
|
EXAMPLE
|
Array begins:
1, 2, 2, 2, 2, 2, 2, 2, ... A040000;
1, 6, 12, 18, 24, 30, 36, 42, ... A008458;
1, 12, 42, 92, 162, 252, 362, 492, ... A005901;
1, 20, 110, 340, 780, 1500, 2570, 4060, ... A008383;
1, 30, 240, 1010, 2970, 7002, 14240, 26070, ... A008385;
1, 42, 462, 2562, 9492, 27174, 65226, 137886, ... A008387;
1, 56, 812, 5768, 26474, 91112, 256508, 623576, ... A008389;
1, 72, 1332, 11832, 66222, 271224, 889716, 2476296, ... A008391;
1, 90, 2070, 22530, 151560, 731502, 2777370, 8809110, ... A008393;
1, 110, 3080, 40370, 322190, 1815506, 7925720, 28512110, ... A008395;
1, 132, 4422, 68772, 643632, 4197468, 20934474, 85014204, ... A035837;
1, 156, 6162, 112268, 1219374, 9129276, 51697802, 235895244, ... A035838;
1, 182, 8372, 176722, 2206932, 18827718, 120353324, 614266354, ... A035839;
1, 210, 11130, 269570, 3838590, 37060506, 265953170, 1511679210, ... A035840;
...
Antidiagonals:
1;
1, 2;
1, 6, 2;
1, 12, 12, 2;
1, 20, 42, 18, 2;
1, 30, 110, 92, 24, 2;
1, 42, 240, 340, 162, 30, 2;
1, 56, 462, 1010, 780, 252, 36, 2;
1, 72, 812, 2562, 2970, 1500, 362, 42, 2;
1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48, 2;
|
|
MAPLE
|
T:=proc(n, k) option remember; local i;
if k=0 then 1 else
add( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k), i=1..n); fi;
end:
g:=n->[seq(T(n-i, i), i=0..n-1)]:
for n from 1 to 14 do lprint(op(g(n))); od:
|
|
MATHEMATICA
|
T[n_, k_]:= (n+1)*(n+k-1)!*HypergeometricPFQ[{1-k, 1-n, -n}, {2, -n-k+1}, 1]/(k!*(n-1)!); T[_, 0]=1; Flatten[Table[T[n-k, k], {n, 12}, {k, 0, n-1}]] (* Jean-François Alcover, Dec 27 2012 *)
|
|
PROG
|
(GAP) T:=Flat(List([1..12], n->Concatenation([1], List([1..n-1], k->Sum([1..n], i->Binomial(n-k+1, i)*Binomial(k-1, i-1)*Binomial(n-i, k)))))); # Muniru A Asiru, Oct 14 2018
(PARI)
A103881(n, k) = if(k==0, 1, sum(j=1, n-k, binomial(n-k+1, j)*binomial(k-1, j-1)*binomial(n-j, k)));
(Magma)
A103881:= func< n, k | k le 0 select 1 else (&+[Binomial(n-k+1, j)*Binomial(k-1, j-1)*Binomial(n-j, k): j in [1..n-k]]) >;
(SageMath)
def A103881(n, k): return 1 if k==0 else (n-k+1)*binomial(n-1, k)*hypergeometric([k-n, 1+k-n, 1-k], [2, 1-n], 1).simplify()
|
|
CROSSREFS
|
Rows include A040000, A008458, A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, A035837, A035838, A035839, A035840, A035841 - A035876.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Corrected by N. J. A. Sloane, Dec 15 2012, at the suggestion of Manuel Blum
|
|
STATUS
|
approved
|
|
|
|