The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156554 The number of integer sequences of length d = 2n+1 such that the sum of the terms is 0 and the sum of the absolute values of the terms is d-1. 25
 1, 6, 110, 2562, 66222, 1815506, 51697802, 1511679210, 45076309166, 1364497268946, 41800229045610, 1292986222651646, 40317756506959050, 1265712901796074842, 39965073938276694002, 1268208750951634765562, 40419340092267053380782, 1293151592990764737265490 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let b(n) = S(d,n) be the coordination sequence of the lattice A_d. Then this sequence is a(n) = S(2n,n). See Conway-Sloane. The sequence is defined by Couveignes et al. LINKS R. H. Hardin and Colin Barker, Table of n, a(n) for n = 0..300 (terms up to n=26 from R. H. Hardin) J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). J.-M. Couveignes, T. Ezome and R. Lercier. Elliptic periods and primality proving, (2008) (pdf. FORMULA a(n) = S(2n,n) where S(d,n) = Sum_{k=0..d} C(d,k)^2*C(n-k+d-1,d-1) from formula (22) in Conway-Sloane. a(n) ~ (1 + sqrt(2))^(4*n + 1/2) / (2^(5/4) * Pi * n). - Vaclav Kotesovec, Apr 10 2018 From Peter Bala, Dec 19 2020: (Start) a(n) = Sum_{k = 0..n} C(2*n,n-k)^2 * C(2*n+k-1,k). a(n) = Sum_{k = 1..n} C(2*n, k)*C(2*n+k, k)*C(n-1,k-1) for n >= 1. a(n) = [x^n] P(2*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A103882. a(n) = C(2*n,n)^2 * hypergeom([-n, -n, 2*n], [n+1, n+1], 1). n^2*(2*n - 1)^2*(24*n^3 - 105*n^2 + 152*n - 73)*a(n) = (3264*n^7 - 20808*n^6 + 53900*n^5 - 73159*n^4 + 55963*n^3 - 24107*n^2 + 5436*n - 504)*a(n - 1) - (2*n - 1)*(2*n - 3)*(n - 2)^2*(24*n^3 - 33*n^2 + 14*n - 2)*a(n - 2). Conjectural supercongruences: for any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k. More generally, if r and s are positive integers, we conjecture that the same supercongruences hold for the sequence defined by [x^(r*n)] P(s*n,(1 + x)/(1 - x)). (End) EXAMPLE The a(1) = 6 sequences are (1,-1,0), (-1,1,0), (1,0,-1), (-1,0,1), (0,1,-1) and (0,-1,1). MAPLE S:=proc(d, n) add(binomial(d, k)^2*binomial(n-k+d-1, d-1), k=0..d); end proc; a:=n->S(2*n, n); MATHEMATICA Table[ Binomial[-1 + 3 n, -1 + 2 n] HypergeometricPFQ[{-2 n, -2 n, -n}, {1, 1 - 3 n}, 1], {n, 0, 10}]  (* Eric W. Weisstein, Feb 10 2009 *) PROG (PARI) S(d, n) = sum(k=0, d, binomial(d, k)^2*binomial(n-k+d-1, d-1)); concat(1, vector(20, n, S(2*n, n))) \\ Colin Barker, Dec 24 2015 CROSSREFS a(n) = A103881(2n, n), A103882. Sequence in context: A119814 A227443 A050884 * A197325 A197978 A241702 Adjacent sequences:  A156551 A156552 A156553 * A156555 A156556 A156557 KEYWORD easy,nice,nonn AUTHOR W. Edwin Clark, Feb 09 2009 EXTENSIONS Formula incorrectly copied from A143699 removed by R. J. Mathar, Mar 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 03:26 EDT 2021. Contains 347623 sequences. (Running on oeis4.)