login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A119814
Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
2
0, 1, 6, 109, 112494, 1887350536045, 543991754934632523092182415214, 758213844806172103575972149363453352380811718063209070444420739586832237
OFFSET
1,3
COMMENTS
The number of digits in these numerators are (beginning at n=2): [1,1,3,6,13,30,72,174,420,1013,2444,5901,14245,34391,83027,...].
EXAMPLE
c = 0.858267656461002055792260308433375148664905190083506778667684867..
Convergents begin:
[0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..]
where the denominators of the convergents equal [2^A001333(n-1)-1]:
[1,1,7,127,131071,2199023255551,633825300114114700748351602687,...]
and A001333 is numerators of continued fraction convergents to sqrt(2).
PROG
(PARI) {a(n)=local(M=contfracpnqn(vector(n, k, if(k==1, 0, if(k==2, 1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3, 2, 2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1, 1])}
CROSSREFS
Cf. A119812 (constant), A119813 (continued fraction), A001333; A119809 (dual constant).
Sequence in context: A041149 A193810 A217987 * A227443 A050884 A156554
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, May 26 2006
STATUS
approved