login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119814
Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
2
0, 1, 6, 109, 112494, 1887350536045, 543991754934632523092182415214, 758213844806172103575972149363453352380811718063209070444420739586832237
OFFSET
1,3
COMMENTS
The number of digits in these numerators are (beginning at n=2): [1,1,3,6,13,30,72,174,420,1013,2444,5901,14245,34391,83027,...].
EXAMPLE
c = 0.858267656461002055792260308433375148664905190083506778667684867..
Convergents begin:
[0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..]
where the denominators of the convergents equal [2^A001333(n-1)-1]:
[1,1,7,127,131071,2199023255551,633825300114114700748351602687,...]
and A001333 is numerators of continued fraction convergents to sqrt(2).
PROG
(PARI) {a(n)=local(M=contfracpnqn(vector(n, k, if(k==1, 0, if(k==2, 1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3, 2, 2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1, 1])}
CROSSREFS
Cf. A119812 (constant), A119813 (continued fraction), A001333; A119809 (dual constant).
Sequence in context: A041149 A193810 A217987 * A227443 A050884 A156554
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, May 26 2006
STATUS
approved