login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103882
a(n) = Sum_{i=0..n} C(n+1,i)*C(n-1,i-1)*C(2n-i,n).
12
1, 2, 12, 92, 780, 7002, 65226, 623576, 6077196, 60110030, 601585512, 6078578508, 61908797418, 634756203018, 6545498596110, 67830161708592, 705951252118284, 7375213677918294, 77310179609631564, 812839595630249540, 8569327862277434280, 90562666977432643862
OFFSET
0,2
COMMENTS
Number of permutations of n copies of 1..3 with all adjacent differences <= 1 in absolute value. - R. H. Hardin, May 06 2010 [Cf. A177316. - Peter Bala, Jan 14 2020]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..950 (terms n=1..94 from R. H. Hardin)
FORMULA
a(n) = (A005258(n-1) + 3*A005258(n))/5 (Apéry numbers). - Mark van Hoeij, Jul 13 2010
n^2*(n-1)*(5*n-8)*a(n) = (n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1) + n*(n-2)^2*(5*n-3)*a(n-2). - Alois P. Heinz, Jun 29 2015
a(n) ~ phi^(5*n + 3/2) / (2*Pi*5^(1/4)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 21 2019
From Peter Bala, Jan 14 2020: (Start)
a(n) = Sum_{k = 0..n} C(n,k)^2*C(n+k-1,k). Cf. A005258.
For any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k (follows from known supercongruences satisfied by the Apéry numbers A005258 - see Straub, Example 3.4). (End)
a(n) = hypergeometric([-n, -n, n], [1, 1], 1). - Peter Luschny, Jan 19 2020
From Peter Bala, Dec 19 2020: (Start)
a(n) = Sum_{k = 1..n} C(n,k)*C(n+k,k)*C(n-1,k-1) for n >= 1.
a(n) = [x^n] P(n, (1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A156554. (End)
a(n) = Sum_{k = 0..n} binomial(2*n-k-1,n-k)*binomial(n,k)^2. Cf. A108628. - Peter Bala, Mar 24 2022
From Peter Bala, Apr 15 2022: (Start)
a(-n) = (-1)^n*A352654(n).
a(n) = [x^n*y^n*z^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
a(n) = B(n,n,n-1) in the notation of Straub, see equation 24.
a(n) = [x^n*y^n*z^(n-1)] (x + y + z)^n*(x + y)^n*(y + z)^(n-1) for n >= 1. (End)
D-finite with recurrence 9*n^2*a(n) -3*(31*n^2-27*n+6)*a(n-1) -2*(37*n^2-138*n+108)*a(n-2) -(n-3)*(17*n-56)*a(n-3) -(n-4)^2*a(n-4) = 0. - R. J. Mathar, Aug 01 2022
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n-1, n-k)*binomial(n+k, k)*binomial(n+k-1, k). - Peter Bala, Aug 13 2023
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+1, k)*binomial(2*n-k, n-k)^2. - Peter Bala, Oct 05 2024
MAPLE
a:= proc(n) option remember; `if`(n<2, n+1,
((n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1)+
n*(5*n-3)*(n-2)^2*a(n-2))/((n-1)*(5*n-8)*n^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 29 2015
# Alternative:
a := n -> hypergeom([-n, -n, n], [1, 1], 1):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Jan 19 2020
MATHEMATICA
Drop[Table[Sum[Sum[Multinomial[r, g, n + 1 - r - g] Binomial[n - 1, n - r] Binomial[n - 1, n - g], {g, 1, n}], {r, 1, n}], {n, 0, 18}], 1] (* Geoffrey Critzer, Jun 29 2015 *)
Table[Sum[Binomial[n+1, k]Binomial[n-1, k-1]Binomial[2n-k, n], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(Magma) [1] cat [&+[Binomial(n+1, i)*Binomial(n-1, i-1) * Binomial(2*n-i, n): i in [0..n]]:n in [1..21]]; // Marius A. Burtea, Jan 19 2020
(Magma) [&+[Binomial(n, k)^2*Binomial(n+k-1, k): k in [0..n]]:n in [0..21]]; // Marius A. Burtea, Jan 19 2020
(PARI) a(n) = polcoef(pollegendre(n, (1 + x)/(1 - x)) + O(x^(n+1)), n); \\ Michel Marcus, Dec 20 2020
(Python)
def A103882(n):
if n == 0: return 1
m, g = 1, 0
for k in range(n+1):
g += m*n//(n+k)
m *= (n+k+1)*(n-k)**2
m //= (k+1)**3
return g # Chai Wah Wu, Oct 04 2022
(SageMath)
def A103882(n): return hypergeometric([-n, -n, n], [1, 1], 1).simplify()
[A103882(n) for n in range(31)] # G. C. Greubel, May 24 2023
CROSSREFS
Equals A103881(n, n).
Row n=3 of A331562.
Sequence in context: A354233 A155639 A333473 * A304979 A003123 A316143
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Feb 20 2005
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 29 2015
STATUS
approved