login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103884
Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.
8
1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
OFFSET
2,3
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122 [cond-mat.stat-mech], 1997.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
FORMULA
A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)
EXAMPLE
Array begins:
1, 8, 16, 24, 32, 40, 48, ... A022144;
1, 18, 66, 146, 258, 402, 578, ... A010006;
1, 32, 192, 608, 1408, 2720, 4672, ... A019560;
1, 50, 450, 1970, 5890, 14002, 28610, ... A019561;
1, 72, 912, 5336, 20256, 58728, 142000, ... A019562;
1, 98, 1666, 12642, 59906, 209762, 596610, ... A019563;
1, 128, 2816, 27008, 157184, 658048, 2187520, ... A019564;
1, 162, 4482, 53154, 374274, 1854882, 7159170, ... A035746;
1, 200, 6800, 97880, 822560, 4780008, 21278640, ... A035747;
1, 242, 9922, 170610, 1690370, 11414898, 58227906, ... A035748;
1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
...
Antidiagonals, T(n, k), begins as:
1;
1, 8;
1, 18, 16;
1, 32, 66, 24;
1, 50, 192, 146, 32;
1, 72, 450, 608, 258, 40;
1, 98, 912, 1970, 1408, 402, 48;
1, 128, 1666, 5336, 5890, 2720, 578, 56;
MATHEMATICA
nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
PROG
(Magma)
A103884:= func< n, k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k, j+1)*Binomial(2*k-1, j) : j in [0..2*k-1]]) >;
[A103884(n, k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
(SageMath)
def A103884(n, k): return 1 if k==0 else 2*sum(2^j*binomial(n-k, j+1)*binomial(2*k-1, j) for j in range(2*k))
flatten([[A103884(n, k) for k in range(n-1)] for n in range(2, 13)]) # G. C. Greubel, May 23 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Feb 20 2005
EXTENSIONS
Definition clarified by N. J. A. Sloane, May 25 2023
STATUS
approved