login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035598 Number of points of L1 norm 4 in cubic lattice Z^n. 4
0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013

M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.

Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = 2*n^2*(n^2 + 2)/3. - Frank Ellermann, Mar 16 2002

G.f.: 2*x*(1+x)^3/(1-x)^5. - Colin Barker, Apr 15 2012

a(n) = 2*A014820(n-1). - R. J. Mathar, Dec 10 2013

a(n) = a(n-1) + A035597(n) + A035597(n-1). - Bruce J. Nicholson, Mar 11 2018

MAPLE

f := proc(d, m) local i; sum( 2^i*binomial(d, i)*binomial(m-1, i-1), i=1..min(d, m)); end; # n=dimension, m=norm

MATHEMATICA

CoefficientList[Series[2*x*(1+x)^3/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 22 2012 *)

PROG

(PARI) a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011

(MAGMA) [( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012

CROSSREFS

Cf. A035596, A035597, A035599, A035600, A035601, A035602, A035603, A035604, A035605, A035606, A035607.

Sequence in context: A222381 A110048 A094505 * A167566 A034579 A006733

Adjacent sequences:  A035595 A035596 A035597 * A035599 A035600 A035601

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 20:21 EDT 2019. Contains 321382 sequences. (Running on oeis4.)