login
A035748
Coordination sequence for C_11 lattice.
3
1, 242, 9922, 170610, 1690370, 11414898, 58227906, 240089586, 838478850, 2564399090, 7039035586, 17664712562, 41110086402, 89719625842, 185263467202, 364571790066, 687750033410, 1249849661170, 2197075886786, 3748850875506, 6227320558338, 10096197409650
OFFSET
0,2
LINKS
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
FORMULA
a(n) = [x^(2n)] ((1+x)/(1-x))^11.
From Robert Israel, Sep 07 2018: (Start)
G.f.: cosh(22*arctanh(sqrt(x))).
(-2*n^2-n)*a(n)+(4*n^2+8*n+246)*a(n+1)+(-2*n^2-7*n-6)*a(n+2)=0. (End)
MAPLE
f:= gfun:-rectoproc({(-2*n^2-n)*a(n)+(4*n^2+8*n+246)*a(n+1)+(-2*n^2-7*n-6)*a(n+2), a(0)=1, a(1)=242}, a(n), remember):
seq(f(n), n=0..100);
MATHEMATICA
RecurrenceTable[{(4*n^2 + 8*n + 246)*a[n+1] + (-2*n^2 - 7*n - 6)*a[n+2] + (-2*n^2 - n)*a[n] == 0, a[0] == 1, a[1] == 242}, a, {n, 0, 100}] (* Jean-François Alcover, Sep 16 2022, after Maple program *)
CROSSREFS
Sequence in context: A318529 A006601 A283723 * A022153 A335611 A194788
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved