login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022153
Coordination sequence for root lattice B_11.
4
1, 242, 11242, 210474, 2224178, 15804866, 83999962, 358159802, 1285951458, 4025098770, 11267030346, 28752157898, 67886298898, 150029971938, 313233102138, 622431249242, 1184409984450, 2169185665330, 3839847763114, 6593364255082, 11015371578354, 17952558422018
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(0)=1; for n>0, a(n) = ( 16296*n^10 - 40520*n^9 + 422820*n^8 - 772320*n^7 + 3019968*n^6 - 3688440*n^5 + 6425580*n^4 - 4306480*n^3 + 2872836*n^2 - 547740*n + 28350 ) / 14175. - Ralf Stephan, Apr 28 2004
G.f.: -(x^11 +1551*x^10 +32659*x^9 +242517*x^8 +812570*x^7 +1346534*x^6 +1139446*x^5 +487674*x^4 +99957*x^3 +8635*x^2 +231*x +1) / (x -1)^11. - Colin Barker, Nov 18 2012
MATHEMATICA
CoefficientList[Series[-(x^11 + 1551 x^10 + 32659 x^9 + 242517 x^8 + 812570 x^7 + 1346534 x^6+1139446 x^5 + 487674 x^4 + 99957 x^3 + 8635 x^2 + 231 x + 1)/(x - 1)^11, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2013 *)
PROG
(Magma) [1] cat [(16296*n^10 -40520*n^9 +422820*n^8 -772320*n^7 +3019968*n^6 -3688440*n^5 +6425580*n^4 -4306480*n^3 +2872836*n^2 -547740*n +28350)/14175: n in [1..30]]; // Vincenzo Librandi_, Oct 17 2013
CROSSREFS
Sequence in context: A006601 A283723 A035748 * A335611 A194788 A338454
KEYWORD
nonn,easy
AUTHOR
mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)
STATUS
approved