login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022152
Coordination sequence for root lattice B_10.
4
1, 200, 7760, 122264, 1099040, 6728168, 31208560, 117555640, 376977472, 1064088840, 2708805776, 6332774360, 13786237280, 28250329640, 54959921840, 102213292024, 182747113600, 315568484680, 528350005968, 860509231640, 1367110174112, 2123741938280, 3232547993840
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(0)=1; for n>0, a(n) = ( 2704*n^9 - 6024*n^8 + 51648*n^7 - 80976*n^6 + 248304*n^5 - 239736*n^4 + 296672*n^3 - 126864*n^2 + 43272*n ) / 945. - Ralf Stephan, Apr 28 2004
G.f.: (x^10 +1150*x^9 +19629*x^8 +114600*x^7 +291410*x^6 +350196*x^5 +201810*x^4 +53544*x^3 +5805*x^2 +190*x +1) / (x -1)^10. - Colin Barker, Nov 18 2012
MATHEMATICA
CoefficientList[Series[(x^10 + 1150 x^9 + 19629 x^8 + 114600 x^7 + 291410 x^6 + 350196 x^5 + 201810 x^4 + 53544 x^3 + 5805 x^2 + 190 x + 1)/(x - 1)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2013 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 200, 7760, 122264, 1099040, 6728168, 31208560, 117555640, 376977472, 1064088840, 2708805776}, 30] (* Harvey P. Dale, Sep 16 2019 *)
PROG
(Magma) [1] cat [(2704*n^9-6024*n^8+51648*n^7-80976*n^6+248304*n^5-239736*n^4+296672*n^3 -126864*n^2+43272*n)/945: n in [1..30]]; // Vincenzo Librandi, Oct 17 2013
CROSSREFS
Sequence in context: A199534 A035747 A219414 * A249238 A230966 A221039
KEYWORD
nonn,easy
AUTHOR
mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)
STATUS
approved