login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199534
Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two consecutive zero elements.
1
200, 6346, 53302, 252154, 860854, 2378412, 5662636, 12071420, 23627580, 43207238, 74751754, 123503206, 196263418, 301676536, 450535152, 656109976, 934503056, 1305024546, 1790593022, 2418159346, 3219154078, 4229958436, 5492398804
OFFSET
1,1
COMMENTS
Row 7 of A199530.
LINKS
FORMULA
Empirical: a(n) = (5887/180)*n^6 + (5887/60)*n^5 + (620/9)*n^4 + (11/12)*n^3 + (433/180)*n^2 - (91/30)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(100 + 2473*x + 6540*x^2 + 2653*x^3 + 4*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=5:
.-5...-5...-4...-5...-4...-5...-4...-5...-4...-5...-5...-5...-5...-4...-5...-4
..1...-3....1....3....0...-5...-4....4...-4....5...-3....0....5...-4....3....2
..1....4...-1....0....4....2....0...-5...-1....1...-1...-2....3....1...-5....2
.-1...-2....3...-1....5...-2....5....5...-2....3...-1....4...-3....4....1....0
..4...-4...-4....1...-2....5...-1....2....3...-3....5....1....0....4....5...-1
..5....5....3...-2...-1....5...-1....0....3...-5....0....4...-2....1....5....1
.-5....5....2....4...-2....0....5...-1....5....4....5...-2....2...-2...-4....0
CROSSREFS
Cf. A199530.
Sequence in context: A220390 A231803 A185988 * A035747 A219414 A022152
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 07 2011
STATUS
approved