|
|
A199534
|
|
Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two consecutive zero elements.
|
|
1
|
|
|
200, 6346, 53302, 252154, 860854, 2378412, 5662636, 12071420, 23627580, 43207238, 74751754, 123503206, 196263418, 301676536, 450535152, 656109976, 934503056, 1305024546, 1790593022, 2418159346, 3219154078, 4229958436, 5492398804
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row 7 of A199530.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..200
|
|
FORMULA
|
Empirical: a(n) = (5887/180)*n^6 + (5887/60)*n^5 + (620/9)*n^4 + (11/12)*n^3 + (433/180)*n^2 - (91/30)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(100 + 2473*x + 6540*x^2 + 2653*x^3 + 4*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
|
|
EXAMPLE
|
Some solutions for n=5:
.-5...-5...-4...-5...-4...-5...-4...-5...-4...-5...-5...-5...-5...-4...-5...-4
..1...-3....1....3....0...-5...-4....4...-4....5...-3....0....5...-4....3....2
..1....4...-1....0....4....2....0...-5...-1....1...-1...-2....3....1...-5....2
.-1...-2....3...-1....5...-2....5....5...-2....3...-1....4...-3....4....1....0
..4...-4...-4....1...-2....5...-1....2....3...-3....5....1....0....4....5...-1
..5....5....3...-2...-1....5...-1....0....3...-5....0....4...-2....1....5....1
.-5....5....2....4...-2....0....5...-1....5....4....5...-2....2...-2...-4....0
|
|
CROSSREFS
|
Cf. A199530.
Sequence in context: A220390 A231803 A185988 * A035747 A219414 A022152
Adjacent sequences: A199531 A199532 A199533 * A199535 A199536 A199537
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Nov 07 2011
|
|
STATUS
|
approved
|
|
|
|