login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199534 Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two consecutive zero elements. 1
200, 6346, 53302, 252154, 860854, 2378412, 5662636, 12071420, 23627580, 43207238, 74751754, 123503206, 196263418, 301676536, 450535152, 656109976, 934503056, 1305024546, 1790593022, 2418159346, 3219154078, 4229958436, 5492398804 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 7 of A199530.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..200

FORMULA

Empirical: a(n) = (5887/180)*n^6 + (5887/60)*n^5 + (620/9)*n^4 + (11/12)*n^3 + (433/180)*n^2 - (91/30)*n.

Conjectures from Colin Barker, May 16 2018: (Start)

G.f.: 2*x*(100 + 2473*x + 6540*x^2 + 2653*x^3 + 4*x^4 + 4*x^5) / (1 - x)^7.

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.

(End)

EXAMPLE

Some solutions for n=5:

.-5...-5...-4...-5...-4...-5...-4...-5...-4...-5...-5...-5...-5...-4...-5...-4

..1...-3....1....3....0...-5...-4....4...-4....5...-3....0....5...-4....3....2

..1....4...-1....0....4....2....0...-5...-1....1...-1...-2....3....1...-5....2

.-1...-2....3...-1....5...-2....5....5...-2....3...-1....4...-3....4....1....0

..4...-4...-4....1...-2....5...-1....2....3...-3....5....1....0....4....5...-1

..5....5....3...-2...-1....5...-1....0....3...-5....0....4...-2....1....5....1

.-5....5....2....4...-2....0....5...-1....5....4....5...-2....2...-2...-4....0

CROSSREFS

Cf. A199530.

Sequence in context: A220390 A231803 A185988 * A035747 A219414 A022152

Adjacent sequences: A199531 A199532 A199533 * A199535 A199536 A199537

KEYWORD

nonn

AUTHOR

R. H. Hardin, Nov 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:15 EDT 2023. Contains 361413 sequences. (Running on oeis4.)