OFFSET
1,4
COMMENTS
From David A. Corneth, Aug 28 2018: (Start)
For 4 <= n <= 10, a(n) has two exponential divisors. Most numbers have 1 or 2 exponential divisors.
For n > 3, a(n) isn't squarefree. (End)
For n >= 2^(k+1), A049419(a(n)) must be divisible by A051548(k), because for 1 <= j <= k at least one of a(n),...,a(n)+n-1 has 2-adic order j. - Robert Israel, Sep 07 2018
LINKS
Eric Weisstein's World of Mathematics, e-Divisor
EXAMPLE
a(4) = 242 since the number of exponential divisors of 242, 243, 244, and 245 is 2, and this is the first run of 4 consecutive numbers.
MATHEMATICA
edivnum[1] = 1; edivnum [p_?PrimeQ] = 1; edivnum [p_?PrimeQ, e_] := DivisorSigma[ 0, e ]; edivnum [n_] := Times @@ (edivnum [#[[1]], #[[2]]] & ) /@ FactorInteger[ n ]; Seq[n_, q_] := Map[edivnum, Range[n, n + q - 1]]; findConsec[q_, nmin_, nmax_] := Module[{}, s = Seq[1, q]; n = q + 1; found = False; Do[ If[ CountDistinct[s] == 1, found = True; Break[] ]; s = Rest[AppendTo[s, edivnum[n] ]]; n++, {k, nmin, nmax}]; If[found, n - q, 0]]; seq = {1}; nmax = 100000000; Do[n1 = Last[seq]; s1 = findConsec[m, n1, nmax]; If[s1 == 0, Break[]]; AppendTo[ seq, s1 ], {m, 2, 7}]; seq (* after Jean-François Alcover in A049419 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 28 2018
EXTENSIONS
a(11)-a(13) from Giovanni Resta, Aug 28 2018
a(14) from Giovanni Resta, Sep 07 2018
STATUS
approved