OFFSET
1,1
COMMENTS
From Giovanni Resta, Aug 28 2018: (Start)
If n = p^k, with p an odd prime, then a(n) = 1 + 2^n + 3^n. We also have
a(12) <= 2387003305930334914 (with divisors 1, 2, 17, 34),
a(14) = 100006103532010 (1, 2, 5, 10),
a(15) = 14381676 (1, 2, 3),
a(16) <= 1880100018939820249188604888836, (1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78),
a(18) = 1000003814697527770 (1, 2, 5, 10),
a(20) <= 19105043663614041367780, (1, 2, 4, 5, 7, 10, 13),
a(21) = 10462450356 (1, 2, 3),
a(22) = 10000002384185795209930, (1, 2, 5, 10), and
a(24) <= 226500219158007133816826003223992308820431641700, (1, 2, 4, 5, 10, 20, 25, 47, 50, 94).
In general, if n = 4*k+2, then a(n) <= 1 + 2^n + 5^n + 10^n. (End)
FORMULA
a(n) = 1 + 2^n + 3^n for n = p^k, p > 2 prime. - Giovanni Resta, Aug 28 2018
From Charlie Neder, Jan 24 2019: (Start)
a(n) = 1 + 2^n + 3^n for n odd,
a(n) = 1 + 2^n + 5^n + 10^n for n congruent to 2 modulo 4,
a(n) = 1 + 2^n + 4^n + 5^n + 7^n + 10^n + 13^n for n congruent to 4 or 8 modulo 12 and not 16 modulo 20.
All other a(n) contain a term at least 24^n. (End)
EXAMPLE
a(2) = 130 since 130 has the divisors 1, 2, 5, 10, ... and 1^2 + 2^2 + 5^2 + 10^2 = 130.
MATHEMATICA
a[k_] := Module[{n = 2}, While[! MemberQ[Accumulate[Divisors[n]^k], n], n++]; n]; Do[Print[a[n]], {n, 1, 10}]
PROG
(PARI) a(n) = for(x=2, oo, my(div=divisors(x), s=0); for(k=1, #div, s=sum(i=1, k, div[i]^n); if(s==x, return(x)))) \\ Felix Fröhlich, Aug 28 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 28 2018
STATUS
approved