login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318528
Least number > 1 that equals the sum of the n-th powers of its first k divisors for some k.
0
6, 130, 36, 41860, 276, 1015690, 2316, 921951940, 20196, 10009766650, 179196
OFFSET
1,1
COMMENTS
From Giovanni Resta, Aug 28 2018: (Start)
If n = p^k, with p an odd prime, then a(n) = 1 + 2^n + 3^n. We also have
a(12) <= 2387003305930334914 (with divisors 1, 2, 17, 34),
a(14) = 100006103532010 (1, 2, 5, 10),
a(15) = 14381676 (1, 2, 3),
a(16) <= 1880100018939820249188604888836, (1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78),
a(18) = 1000003814697527770 (1, 2, 5, 10),
a(20) <= 19105043663614041367780, (1, 2, 4, 5, 7, 10, 13),
a(21) = 10462450356 (1, 2, 3),
a(22) = 10000002384185795209930, (1, 2, 5, 10), and
a(24) <= 226500219158007133816826003223992308820431641700, (1, 2, 4, 5, 10, 20, 25, 47, 50, 94).
In general, if n = 4*k+2, then a(n) <= 1 + 2^n + 5^n + 10^n. (End)
FORMULA
a(n) = 1 + 2^n + 3^n for n = p^k, p > 2 prime. - Giovanni Resta, Aug 28 2018
From Charlie Neder, Jan 24 2019: (Start)
a(n) = 1 + 2^n + 3^n for n odd,
a(n) = 1 + 2^n + 5^n + 10^n for n congruent to 2 modulo 4,
a(n) = 1 + 2^n + 4^n + 5^n + 7^n + 10^n + 13^n for n congruent to 4 or 8 modulo 12 and not 16 modulo 20.
All other a(n) contain a term at least 24^n. (End)
EXAMPLE
a(2) = 130 since 130 has the divisors 1, 2, 5, 10, ... and 1^2 + 2^2 + 5^2 + 10^2 = 130.
MATHEMATICA
a[k_] := Module[{n = 2}, While[! MemberQ[Accumulate[Divisors[n]^k], n], n++]; n]; Do[Print[a[n]], {n, 1, 10}]
PROG
(PARI) a(n) = for(x=2, oo, my(div=divisors(x), s=0); for(k=1, #div, s=sum(i=1, k, div[i]^n); if(s==x, return(x)))) \\ Felix Fröhlich, Aug 28 2018
CROSSREFS
Sequence in context: A012842 A012638 A338709 * A095695 A156475 A000907
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 28 2018
STATUS
approved