

A318526


Decimal expansion of (7*20^(1/3)19)^(1/6).


1



3, 1, 2, 0, 5, 0, 6, 3, 6, 7, 6, 0, 3, 8, 8, 7, 3, 2, 9, 5, 4, 8, 3, 1, 1, 1, 3, 9, 3, 2, 3, 0, 5, 1, 0, 4, 9, 1, 2, 8, 8, 6, 4, 2, 2, 9, 2, 5, 2, 6, 8, 3, 0, 0, 3, 8, 7, 9, 4, 4, 5, 6, 4, 4, 2, 7, 4, 3, 4, 6, 2, 9, 6, 2, 0, 9, 2, 6, 3, 8, 2, 2, 9, 1, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Ramanujan's question 1076 (i), see Berndt and Rankin in References: Show that (7*20^(1/3)19)^(1/6) = (5/3)^(1/3)(2/3)^(1/3).


REFERENCES

B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0821826247, page 222 (JIMS 11, page 199).
Susan Landau, "Simplification of nested radicals." SIAM Journal on Computing 21.1 (1992): 85110. See page 85. [Do not confuse this paper with the short FOCS conference paper with the same title, which is only a few pages long.]
S. Ramanujan, Coll. Papers, Chelsea, 1962, page 334, Question 1076


LINKS

Table of n, a(n) for n=0..84.


EXAMPLE

0.31205063676038873295483111393230510491288642292526830038794456442743462...


MAPLE

evalf((7*20^(1/3)19)^(1/6)); # Muniru A Asiru, Aug 28 2018


PROG

(PARI) (7*20^(1/3)19)^(1/6)


CROSSREFS

Cf. A317969.
Sequence in context: A054025 A265910 A222212 * A054869 A201671 A226590
Adjacent sequences: A318523 A318524 A318525 * A318527 A318528 A318529


KEYWORD

nonn,cons


AUTHOR

Hugo Pfoertner, Aug 28 2018


STATUS

approved



