login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318531
Number of finite sets of set partitions of {1,...,n} such that any two have join {{1,...,n}}.
2
2, 4, 18, 450, 436270
OFFSET
1,1
EXAMPLE
The a(3) = 18 sets of set partitions:
0
{{1,2,3}}
{{1,3},{2}}
{{1,2},{3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,3},{2}} {{1,2,3}}
{{1,2},{3}} {{1,2,3}}
{{1,2},{3}} {{1,3},{2}}
{{1},{2,3}} {{1,2,3}}
{{1},{2,3}} {{1,3},{2}}
{{1},{2,3}} {{1,2},{3}}
{{1},{2},{3}} {{1,2,3}}
{{1,2},{3}} {{1,3},{2}} {{1,2,3}}
{{1},{2,3}} {{1,3},{2}} {{1,2,3}}
{{1},{2,3}} {{1,2},{3}} {{1,2,3}}
{{1},{2,3}} {{1,2},{3}} {{1,3},{2}}
{{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2,3}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[stableSets[sps[Range[n]], Length[csm[Union[#1, #2]]]>1&]], {n, 4}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 28 2018
STATUS
approved