The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k. 11
 1, 1, 3, 1, 9, 15, 1, 21, 90, 113, 1, 45, 375, 1130, 1153, 1, 93, 1350, 7345, 17295, 15125, 1, 189, 4515, 39550, 161420, 317625, 245829, 1, 381, 14490, 192213, 1210650, 4023250, 6883212, 4815403, 1, 765, 45375, 878010, 8014503, 40020750, 113572998, 173354508 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA T(n,k) = S(n,k) * Sum_{i=1...k} s(k,i) * B(i)^2 where S = A008277, s = A048994, B = A000110. EXAMPLE The T(3,2) = 9 pairs of set partitions:   {{1},{2,3}}  {{1},{2,3}}   {{1},{2,3}}   {{1,2,3}}   {{1,2},{3}}  {{1,2},{3}}   {{1,2},{3}}   {{1,2,3}}   {{1,3},{2}}  {{1,3},{2}}   {{1,3},{2}}   {{1,2,3}}    {{1,2,3}}   {{1},{2,3}}    {{1,2,3}}   {{1,2},{3}}    {{1,2,3}}   {{1,3},{2}} Triangle begins:      1      1     3      1     9    15      1    21    90   113      1    45   375  1130  1153      1    93  1350  7345 17295 15125 MATHEMATICA Table[StirlingS2[n, k]*Sum[StirlingS1[k, i]*BellB[i]^2, {i, k}], {n, 10}, {k, n}] CROSSREFS Row sums are A001247. Last column is A059849. Cf. A000110, A000258, A008277, A048994, A060639, A181939, A318389, A318390, A318392, A318393. Sequence in context: A232598 A174510 A141237 * A157399 A288852 A162749 Adjacent sequences:  A318388 A318389 A318390 * A318392 A318393 A318394 KEYWORD nonn,tabl AUTHOR Gus Wiseman, Aug 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 08:31 EST 2020. Contains 331293 sequences. (Running on oeis4.)